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I. Report Summary

The research supported by DARPA Contract No. N00014-88-K-0392 concerns
the investigation of the physical properties of the components of a new solid state
microbattery. This battery consists of a lithium metal anode, a lithium borate
glass separator, and a cathode of the layer compound InSe which readily
intercalates lithium ions and which is also an electronic conductor. The battery
operates by the passage of lithium ions between the electrodes through the borate
glass separator and the passage of electrons between the electrodes via the
external circuit. A single battery of this type produces a voltage of 2.7 V, can be
discharged with a current density of 50 Acm™2 and can achieve a specific energy
of 300Wh kg'1 . It is the ultimate objective of this project to produce systems
composed of many microbatteries for applications requiring high voltage, high
current density and/or high energy density.

In order fo achieve this objective, it is necessary to have a fundamental
understanding of fast ion transport in the lithium borate glasses and of both fast
ion and electron transport in the layer compound. This fundamental
understanding has been advanced by both experimental and theoretical work, the
experimental work being carried out at the Laboratoire de Physique des Solides in
Paris by the group of Professor M. Balkanski of the Université Pierre et Marie
Curie, and the theoretical work being carried out at the University of California,
Irvine, under this contract. For the lithium borate glasses the experimental work
has provided measurements of ionic conductivity as well as infrared and Raman
spectra, while the theoretical work has provided a quantitative understanding of
ion migration and interionic forces. For the lithium-intercalated layer compound
InSe, the experimental studies have yielded important data on optical properties
due to electronic transitions and on infrared and Raman spectra. The theoretical

studies have yielded the electronic band structure of lithium intercalated InSe
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and detailed information on interionic forces in this material. The results of the
investigations just described provide the-basis for establishing the desired.
fundamental understanding of fast ion and electron transport in the microbattery
components.

Summaries of the individual projects now follow.
A. Dmamigﬂai Properties of Fast Ton Conducting Borate Glasses

Experimental and theoretical investigations which lead to an improved
understanding of the physics of ion diffusion in lithium-doped borate glasses have
been carried out. The results of network dynamics and lattice dynamics
calculations of the atomic vibrations of undoped and doped borate glasses, i.e.,
B,0; and B,0; ~ xLi0, respectively, have been correlated with Raman scattering
and infrared reflectivity measurements. Addition of the modifier Li,0 has been
shown to. cause a transformation of three-coordinated to four-coordinated boron
atoms. The force constant for B-0 interactions has been found to be larger for
four-coordinated boron than for three-coordinated boron. The introduction of
dopants, e.g., Li,SO, or LiX (withX = F, Cl, Br, I) leads to a significant incréase in
the ionic conductivity.
B. Effect of Intercalated Lithium on the Electronic & suci, ¢ of Indium

Selenide

The effect of intercalated lithium on the electronic structure of the B— and
v- polytypes of InSe has been investigated using a tight-binding model. The
energy bands of the pure polytypes were calculated and the results compared with
previous work. The tight-binding parameters associated with intercalated
lithium atoms were obtained using tabulated atomic functions. The modifications
of the energy bands and Fermi level produced by the introduction of one lithium
atom per unit cell were calculated for the lowest potential energy positions of the

lithium atom in the Van der Waals gap between layers. The intercalation
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induced changes in the smallest and next-to—smallest direct band _aps were
determined. An interpretaﬁon of a new photoluminescence peak in lithium—
intercalated InSe has been developed, and the existence of a lithium impurity
band in this material has been established.
C. Lattice Vibrati rties of Lithium-1I i leni

A theoretical investigation of the normal modes of vibration of pure and
lithium-intercalated InSe has been carried out. Lattice dynamical models have
been developed for both materials. The force constants were determined by fitting
calculated normal mode frequencies to experimental infrared and Raman
spectra. It has been found that localized vibrational modes associated with
lithium-atom vibrations appear in the lithium-intercalated InSe. One localized
mode occurs at a very high frequency and corresponds to a lithium atom vibrating
perpendicular to the layer plane, while a second localized mode occurs at a much
lower frequency and corresponds to a lithium atom vibrating parallel to the layer
plane. The results of this investigation provide precise information concerning
‘the forces of interaction between an intercalated lithium atom and the
neighboring indium and selenium atoms.
D. Mol r Dynami fth ice Vibration Contribution to th

r ncy-D nt Dielectric Constant of Lithium Jodi

A promising approach to realistic calculations of fast ion dynamics in
lithium borate glasses involves molecular dynamics whereby one solves the
classical equations of motion of the ions on a computer for a given set of interionic
potentials. This is a very complicated problem for a disordered system such as a
glass, so we have started this project by performing a molecular dynamics
simulation of a simpler system, namely, the crystal lithium iodide, Lil. A rigid
ion potential was used with parameters fit to thermal expansion, isothermal

compressibility, lattice energy, and the frequency of the transverse optical mode at
3
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the zone center. The'current—current'con:elation function was calculated at

T =200K and 400K, and from this function the real and imaginary parts of the
dielectric function as functions of frequency were obtained. Anhkarmonic
broadening was observed at the higher temperature. The experience gained from
this calculation will be of great value in carrying out the more difficult molecular

dynamics simulation for a lithium borate glass.




II. Detailed Project Reports

A.Dynamical Properties of Fast Ion Conducting Borate Glasses

M. Balkanski*, R. F. Wallis, J. Deppe
Department of Physics
University of California

Irvine, CA 92717, U.S.A.

M. Massot
Laboratoire de Physiques des Solides
Universite Pierre et Marie Curie

4, place Jussieu, 75252 Paris Cedex 05, FRANCE

1. Introduction

Fast ion conducting glasses have attracted considerable
interest in recent years in view of their use as separators in
solid state batteries. A solid state cell is formed of three
components: an ion source, usually Li; a dielectric insulator but
good ion conductor such as the lithium borate glass, for example,
which acts as a separator between the anode, ion source and the
cathode or electron exchanger; and an insertion compound acting as
an electron exchanger. The requirements of the separator are to
be shape adaptable in order to assure good contact with the ion
source and the exchanger and to have a good ionic conductivity.
Another important characteristic is that the separator should be
as perfect a dielectric as possible in order to pravent electronic

leakage and assure a long shelf lifetime of the batteries. The

borate glasses are cne of the best materials among those known




today to resgpond to all these reqiirsments.

The boron oxide glass is a very ggod insulator and
constitutes the glass former. Upon tiie: addition of a modifier
such as Li,O0, for example, the structure of the glass is
significantly changed. In addition, some fraction of the Li,O
dissociates releasing free lithiuvm ions and thus considerably
increasing the ion conductivity of the glass. A further increase
of the conductivity is achieved by adding a dopant centaining the
mobile ion, Li in this case. The eifect of the dopant upon the
concentration of free ions available for the conduction process
has been investigated recently {(1]. Spectroscopic investigations

cn the structure ci torate glasses with different modifier
concentrations and different dopants have also been extensively

developed and a summary is given in a recent publication (2].

The structural modifications conditioning the fast ion
conduction in borate glasses are inferred mainly from spectro-
scopic data which reflects the dynamical properties of the glass
matrix. It was therefore important to develop theoretical séudies
an the vibrations of the glass in parallel with the experimental
investigations. We shall present here simultaneously the
~heoretical and experimental results on the vibrational properties
cf the borate glass with the aim of reaching some conclusions on
zhe conditions for increasing the ionic conductivity of the
glass. In successive chapters we shall deal with the vibrations
of pure borate glass, Chapter 2, and with the modifications
occurring when different concentrations of Li,O are added to the
zorate glass, Chapter 3. Chapter 4 will be devoted to the effect
2f different dopants, and in Chapter 5 we shall discuss the effect

cf the glass structure on the lithium mobility and present a




statistical mechanical theory of ionic conductivity. In Chapter 6
a double well model of freguency-dependent conductivity will be
discussed.

2. Vibrations of Boron Oxide Glass

The structure of the boron oxide glass has been studied by
X-rayv I3}, Raman (4], infrared [5], nuclear magnetic resonance (6}
and neutron diffraction {7] measurements. According to these
cbservations, boron oxide glass is formed of an infinite network
of boroxol groups B505;. The six atoms inside the group form a

cianar ring and the B-~0-B angle is 120°. These boroxol hexagons
are interconnected by an oxygen bridge -O- and the external B-0-B

angle #, less accurately determined, is about 130°. The relative
geometry of two successive boroxol planes is not well Xnown.

one of the characteristic features of the vibrational spectra
of v-B,04 observed by Raman scattering (2] and shown in Fig. 1 is
the presence of a sharp peak at 800 em™! which is strong and well
polarized [38]. Usually the vibrational spectra of amorphous solids
are expected to consist of broad bands (see for example ref. 9).
This is because the lccalized molecular mode responsible for a
sharp peak couples with all other atoms and broadens when a net-
work Is formed. For example, Galeener et 2l. [8] have calculated
vibrations of v-B,0; using the Bethe lattice approximation
(described in detail below) and obtained only broad bands due to
extended modes.

There have been a2 few attempts to understand theoretically
the rossible existence of sharp features in the vibraticnal spec-
tra. Xristiansen and Krogh-Moe {10] calculated the vibrational

frequencies of the boroxol molecule with atoms of variable mass
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attached to the outer oxygen atomé and found that the mode at 800
cn~! does not vary much when the_mass is changed. Galeener et al.
i11] explain the decoupling of rings from the rest of the network
by a somewhat fortuitous cancellation of central and noncentral
forces.

Galeener and Thorpe [12] have also discussed the intrcduction
of 6-foid borexel rings into a continuous randcm network model of

v=B505. They conclude that the 800 cm™ - mode consists of a

breathing motion of the intra-ring oxygen, and therefore coes not

couple to the outside network.

Kanehisa and Ellictt {131 have demonstrated this decoupling
explicitly using a cluster Zethe-lattice approximation as outlined
in the fclilowing section.

2.1. The Bethe lattice apoproximation

¥. A. Xanehisa and R. J. Elliott (13] have used an extension

of the Bethe liattice approximation to calculate a partial vibra-

et

ional density of states of the boroxol network. They show by

expiicit calculation that the 800 cm™ ! mode v, of the boroxol

group remains sharp even when an infinite network is formed. This

caiculation confirms the earlier assunmpticn {4,537 that this mcde

invoives mainly the "breathing"” motion of oxygen atoms inside the

ring while the boroxoi-boroxol coupling on netwerk formaticn
invoives =mainly motion of the boron atoms and the external
(binding) cxygen atoms.

Using the Eethe lattice approximation Kanenisa and Elliott
were abkle to solve the equations of nmoticn for an infinite systen
having cdefinite lccal symmetrv withcut long-range order. The

Bethe lattice cocnsidered is pictured in Fig. 2. The mathezmatical

detaiis aznd the methods used to treat a2 boroxoi unit embedded in

10
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the Bethe lattice are published el'sewhere (133.

The vibrational spectrum of an isolated boroxol molecule is
calculated first. By adjusting the v, mode frequency for the
isolated boroxol molecule to the experimental value of 800 cm'l,
the force constant o is determined to be 9.4x10° dyn cm™l. The ﬁi

vibrational density of states calculated for the network is shown jé

in Fig. 4. A width vy of 100 cm™! is added in order to account for

the bond angle fluctuation around the ideal values. The calcu-
lated vibrational density of states spectrum compares reasonably
well with the experimental Raman spectrum, shown in Fig. 1. There
is a gap at 1200-1500 cm™t separating the low and high frequency
bands in the calculated spectrum as in the experimental spectrum.
The higher frequency bands are mainly due to boron atom motion
while those below the gap are due mainly to oxygen atom motion.
The most remarkable feature in this calculation is the fact that
the v, mode at 800 cm™!, remains sharp without any significant
broadening on network formation. This is probably the first
explicit demonstration of the vibrational decoupling of a
molecular mode from the rest of the network.

3. Effect of the addition of modifier Li,0 to v-B,05: The system

8203-xLi20

3.1. Experimental results

The Raman spectra of the binary glass B,0,~xLi, 0 are shown in
Fig. 5. At low Li,O concentration, x = 0.1, the 800 cm™ ! band
corresponding to the breathing oxygen motion in the boroxol riné,
the v mode trigonal deformation of the ring shown in Fig. 2, is
still narrow and strong. A new band appears at 780 em™! which

corresponds to the trigonal deformation of six-membered borate

12
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rings with one or two BO, units fZ] as shown in Fig. 6 for the

tetraborate, triborate or diborate configuration. The band at 500

em™t corresponds to the breathing mode v (Fig. 2) where the borocn

and the bridging oxygen atoms move in phase. The mode v at 1240

ll
cm’l, is associated with the symmetric vibration of the same

atoms. The band between 1400 and 1550 cm™ ! is associated with the
stretching vibrations of the B~O bonds in BO, units. The three

regions associated with the stretching vibrations of the B-0 bonds
which link the boron-oxygen netwofk will be modified upon addition
of Li,0, which leads to the transformation of trihedrally

BIII’ to

coordinated boron, tetrahedrally coordinated boron, BIV,

according to the reaction

) 0

(0] - i 2=
\B-O-B/O + Li.O Ngeomt—o + 20i”
yae AN 2 - / I

0 0 o !

For low Li,O concentration, the abundance of IV increases, (with
inc}easing modifier concentration); as a consequence, the intens-
ity of the line at 780 cm™! increases while that at 806 cm™}
decreases and finally vanishes at x = 0.3. For x larger than 0.5,
the frequency of the BIV band decreases until it reaches 760 cm™*
in the metaborate glass x = 1.0.

At high Li,O concentration (x > 0.5), the formation of non-
bridging oxygen atoms is inferred from the relative intensity
increase of the two bands at 960 and 1480 cm™*.

Two stages of modification can be distinguished when the
concentration of the modifier increases. During the first stage,

the tetrahedrally coordinated boron units increase and lead to an

15
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increase of the linkage of the boron-oxygen network up to x = 0.5.
Above this concentration, formation of BO5 units with nonkridging
oxygen atoms "opens" the borate units and consequently the degree
of linkage of the network is decreased.

3.2 Theorv

With the vibrational frequencies of groups of atoms in a
given configuration deduced from spectroscopy data, it is of
interest to calculate the vibrational spectrum with some specific
short-range configuration. Toward this end, we have emploved the
network-dynamics theory and lattice dynamics in order to effect an
indirect determination of the glass structure. Central force
network-dynamics seems an ideal method to investigate the relatinn
between local environmental changes and the modes of vibrations,
since the short range order can be easily modified.

3.3. Methods of Calculation

3.3.1. Network dvnamics

The network-dynamics method, introduced by Sen and Thoipe
(14], considers only nearest-neighbor central forces in the
continuous random network under consideration: the other forces,
for example, long-range Counlomb and angle bending forces, are much
smaller in many cases. This approximation might be expected to
hold particularly well in the optical frequency range with which
we will be concernea.

Thorpe and Galeene. {15] have put the central-force model of
Sen and Thorpe in a mure general framework using a Lagrangian

formulation.

In the above-mentioned formulation, the bond directions at
each atom are used to define a local coordinate system. The

labels, 2, 2', etc., denote the sites, or atoms, in the network

17




and a, &', etc., denote the bonds or directions at each site. The

displacement of the £th th

atom along the a  bond is written as
qA(Z). With éhis notation, qA(ﬁ),qA,(l) refer to displacements
at the same site, but in different directions, and qA(z),qa(z')
refer <o displacemen+ of two nearest neighbors along the bond
joining them. In %tni: .ase, the potential energy of the network

takes a particuiar+, saimge.e form:

V=

(N1}

. 2
D (g, (2)+q, (2')1° , (3.1)
LIS .

where e« is the neare"x -neighior force constant. The angular
brackets under the summation indicate that each bond is to be
counted cnly once.

In the case of fourfold-coordinated (or planar threefold-
coordinated) atoms, the qA(z) form an overcomplete set; so.a
constraint must be built into the tae Lagrangian to ensuré that
7ZAqA(2)ﬁ0 for each atum £. One can aczomplish this by adding to

the potential a term

N>

I [ an]® (3.7
2 2 )
and then taking the limit X - o at the end of the calculation to
ensure that all solutions are consistent with the constraint
Zéq£(2)=0.

The expression for the kinetic energies depends on the
particular local environment of “he atom, i.e., whether it has

two, cthree, or four nearest heighbors. To find this expression,

we consider the transformation between a fixed x,y,z coordinate

system and the local bond direction coordinate system as shown 11
Fig. 7. with these expressions in hand, it is straightforward to

genérate the Lagrangian for any particular network under consideration,

18
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L((gy,4;)) = TU{&)) - va;)) (3.5)

where the curly braces, (...}, indicate the set of a; for all

atoms i. The equations of motion are then given by

oé}i 60‘_i

As discussed in the previous secticn, we have seen that the
additicn of Li,O to B,05 is accompanied by the appearance of
groups ccntaining fourfold-coordinéted borons. In addition, the
concentration of these structures increases proportionally with
the ccncentration of the modifier Li,O0 up to a critical value
Xc- Wwe 'shall consider a network containing both threefold~ and
fourfcld-coordi:iated borons. Indeed, for the composition

3,0,-0.5Li,0, one can envision a network of equal numbers of

threefold- and fourfold-coordinated borons. Here we consider one
such network, with each threzfold-coordinated boron surrounded by

fourfold-coordinated borons and vice versa. shown in Fig. 8

Using the results from the last section for twofold-,
threefold- and fourfold-coordinated atoms, the Lagrangian for the

network drawn in Fig. 8 takes the form

3m 2 . M .2 . 2 m o_, .2
L = (2)1° + 5% L ax (2)+b Y %, (2) + = a'y vy (2)
8 2§A[q3 2% [A a ( s 8 )]+ 2 a8
1 2 1 2
- 3 q, (2) - A Yy, (2)
2 % ( E A ] 2 § ( s A )
a 2 8 . 51y 12
-3 L (g, (2) + x,(211° -5 L (y. (2) + %, (2"1°
2 (g,2v,8) ° 1 2 (g0pr,ay A T2

...l -
where a = (l1-cosé) ' a + 2b = (l+cos?g) 1 and

’

where we use g, (%) and force constant a for the fourfold-

coordinated borons, yA(z) and force constant g for the threefold-
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coordinated borons, xl'z(z) for the oxygen in the directions of
a(2),y(£), respectively, and again Mpgo,on = M, Moxygen = M. The
equations of motion and their solution are presented in a separate
publication (16].

The central-force eigenfrequencies of the network are

determined by the relation

12(8, - ma'wz)(al - % w%) = (a'e)? ,

where we have defined the frequency-dependent force constants

_ szaecosa

7
(Mw?) %= (a+B ) Mw2+adsin’s

az(ﬁwz-asinze)
(sz)z‘(a+ﬂ)Mw2+aasin20

a, = at+

_ 82 (Mw2-2sins)

3y % 87 /53 2 2.

(Mu™)"= (e+f)Mw"+afsin™ 4§

This equation determines the allowed central-force freguency bands
as a function of the force constants ¢ and 5, the masses, and the
bridging angle 4.

3.3.2. Lattice Dvnamics

The lattice~dvynamics calculations were carried out as an
independent check on the network-dynamics results. As such, they
were done in the nearest-neighbor central-force approximation.

No disagreement was found between the lattice-dynamics and
~metwork-dvnamics calculations. The two methods are cuite ccmple-

=entary in examining the effect of varying various parameters,

22




such as force constants, intermolecular bridging angles, or
configurations on the vibrational spectrum of the solid.

3.4. Results and Discussion

when a modifier, Li,O for example, is added to the glass
former B,0,, the modes involving the B-O bends which link the
boron oxygen network are modifieq. This can be understood as
being due to the transformation of threefold- to fourfold-
coordinated boron.

As can be seen in the experimental data for B,0,-0.1Li,O from

Fig. 5, the vibrational spectra are significantly modified by the

addition of lithium oxide (i8]. A new band appears at 776 cm - in
the Raman spectrum, and a set of broad features moves up in the
infrared spectrum, all due to the presence of EOZ groups. t the
same time, the intensities of the 808- and 1960-cn” ! peaks in the
Raman spectrum and the 1360-cm'1 peak in the infrared spectrum are
seen to decrease in intensity, relative to the other peaks, with
increasing Li,O0 concentration. The new bands observed in the
infrared spectrum at 800 and 1030 cn~! are attributed to BO, bond
stretching in tetraborate groups [19].

In Fig. 9, the results of network- and lattice-dynamics cal-
culations (16] are presented for P/ot = 0.8. Note that the
general features in the spectra such as the narrowing of the
middle frequency gap as compared to the data of pure B,0,, are
found in the network-dynamics results. The widening of the high-
frequency gap, presumably due to the difficulty of the modes
associated with BO,; groups to hybridize with those of the stiffer

BO, groups, is also found.
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If we compare the results in‘Figs. 9 and 10 with the Raman
spectra shown in Figs. 1 and 5, the agreement is quite striking.
The results forﬁb@=0.9 feature a large frequency gap which is in
excellent agreement with the experimental data for x = 0. The

Pﬁx= 0.8 calculation results in more extended frequency bands which
represents very closely the spectra displayed in Fig. 5 for
8203-0.5Lizo. The appearance of modes at 960 and 1120 em™! in the
formerly featureless mid-frequency band is "allowed" by the broad-
ening of the bands predicted by tﬁe network-dynamics results. The
oeaks at 505 and 672 cm™* in the Raman spectra are basically un-
affected by the addition of the modifier, and as expected the low-
and high-frequency band edges of the first band are unchanged.

It is interesting to note that such simple calculations

should yield results representing well the trends in the spectral
distribution of different vibrational modes in the binary glass
system as a function of modifier concentration. This result
suggests that the force constants used are reasonable, and again
undérscores the importance of local order in understanding the

vibrational response of covalently bonded glass.

4, The Effect of Dopants

4.1. Structural modifications induced by the Dopant

Two types of dopants which introduce additional free Li ions
and increase the ionic conductivity of borate glasses are exzam-
ined: the lithium halides LiX (X = F,Cl,Br,I), and lithium sulfate
Li,S0,. A general observation is that the dopz.ats do not
significantly modify the glass structure which simply localizes
the anion leaving as the only mobile species the small lithium

cation. The larger the anion, the stronger is its interaction

with the host network.
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Raman and infrared spectra displayed in Figs. 11 and 12 show
more pronounced changes in the spectra as one goes from F to Cl,

Br, and finally I. The main effect is a decrease in the intensity
1

of the peak at 808 cm - measuring the relative abundance of tri-
hedralily coordinated boron plIl atoms and an increase of the peak
at 734 cm~ ' characteristic of the vibration of tetrahedrally
coordinated boron sIv, Analysis of the shape of the BO, bands,
784 cm~! in Raman scattering and 850-1100 em™! in infrared
reflectivity, points toward the redistribution of these units into
the network. For glass doped with LiF they are included preferen-
tiaily in tetraborate groups ([21], and the fluorine anions
participate in the network forming BO,F and BO,F, units [22].
Chlorine, bromine and iodine anions enter the network in inter-
stitial positions [18]. Introduction of the dopaiit salt results in
the breaking of B-0-B links and the formation of BO4 units. Their
distribution in the network is conditioned by electrostatic -inter-
actions between the negative anion and the BO, units. Modifica-
tion of the boron- oxygen network conformation reéults in a less
linked network facilitating free ion diffusion.

In the ternary glass B,05-~0.57Li,O-yLiX, in which the modi=-
fier concentration is such that the glass does not contain boroxol
rings, the modification due to the introduction of dopant salts is
characterized in the Raman sSpectrum by the appearance of a shoul-
der at about 720 cm~! on the 770 cm™! band due to the vibration of
four-coordinated boron atoms. Fur a given halide anion this new
line shifts toward lower frequencies and its intensity increases

Wwith increasing dopant salt concentration, y, as shown in Figure

13. At the same time the frequency of the band at 520 cm™t due to
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the in-phase motion of the bridging oxygen and the boron atom in=~
creases. The stiffening of this mode, which is higher the larger
the anion size, corresponds to a conmpression of the B-0-B band.

There is also an increase o§ intensity of the bands at 960
and 1480 cm™t attributed to the vibrations of groups with non-
bridging oxygen atoms. Sharpening of these bands and a shift
toward higher frequencies is observed when going from LiCl to LiI
with the same conpentration.

Infrared reflectivity data corroborate the general findings
from Raman scattering as to the effect of the addition of a dopant

salt to the borate glass. A new reflectivity band appears at 1245

cm™! when a dopant is added, as seen in Figure 14, which shifts
toward lower frequencies when changing the dopant salt from LiF
(1245 cm™}) to LiI (1220 cm™!). This is consistent with the
formation of BO,; units with nonbridging oxygen atoms. This result
points toward a decrease of the linkage of the network. When a
doping salt is added, the network is expanded. The BO, groups are
transformed into BO; triangles and BO, with nonbridging oxygen
atoms which can be connected into chains, a configuration which is
consistent with the softening of the mode and which is favored
when the size of the anion is increased.

These modifications of the boron-oxygen network of the
ternary glasses have shown that in all the cases the lithium
halide addition results in an expansion of the network, the effect
being most pronounced with LiI. These results agree with density
and glass transition temperature measurements.

These observations are of prime importance for the under-

standing of the ion transport properties of the borate glasses.
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The BO, groups may be considered as negative ions with a large

ionic radius which provide binding sites with small binding energy

for the mobile lithium ions. At low modifier content the increase

of ionic conductivity comes from the increase of the number of BO.

units and of the number of free lithium ions. But for higher

oxide content there is competition between two competing mechan-
isms: an increase in the number of free lithium ions provided by
the dissociation of the dopant salt and convérsion of the BO,
units into BO5 units with nonbridging negatively charged oxygen
atoms which trap the lithium ions. 1In the range of large Li,O
modifier content the conductivity is less sensitive to the

addition of the doping salt.

4.2. Effect of the dopant Li,S04: B,0,5-xLi,0-yLi,SO,

Comparison of the Raman scattering spectra of the binary
8203-0.7L120 and ternary 5203-0.7Lizo-0.42Li2804 systems, dis-~
played in Figure 15, shows that-the spectrum of the Lizso4 doped
glass consists of the superposition of the spectra of B,0,~0.7Li,0
and Li,SO,. The peaks appearing at 456, 644, 1004 and 1100 ca~t

correspond respectively to Vor Var Vg and Vi vibrations of the

sulfate ion [23].

Analysis of the infrared reflectivity spectra presented in
Figure 16 reveals the disappearance of the band at 1235 cm™ due
to rotations in the trigonal BO; units with nonbridging oxygen
atoms. Sulfate addition transforms these groups into BO, units
included in the tetraborate or diborate groups (24]. Formation of
diborate groups preferentially indicates that there is an
expansion of the network to accommodate the sulfate ions with a

decrease of the degree of linkage of the network.
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5. Ion conduction in lithium borate glasses.

5.1. Introduction

We have seen in the previous chapter that in this superionic
conductor the dopant salt LiCl or Li,S04 is dissolved in a solid
matrix consisting of the lithium borate glass B,0,-xLi50. The
salt dissociates giving Li* ions and €17 or LiSO4- 5.4 50,2"
ions. The LiY ions are highly mobile and significantly increase
the electrical conductivity of the system. The situation is guite

analogous to the electrolytic solution where a salt is dissolved

in a liquid solvent such as water. There is one significant
difference, however, and that is that water has a dielectric
constant cf about 80 whereas borate glasses have a dielectric
constant of about 8. This means that at room temperature a
tvpical salt such as LiCl will be nearly fully dissociated in
aqueous solution but will be only weakly dissociated in the borate
glass. Furthermore, in the latter case, the concentration of
lithium ions will increase rapidly as the temperature 1is increased
above room temperature. Consequently, the electrical conducéivity
of the doped borate glasses should increase rapidly with
increasing temperature as is well demonstrated experimentally.

The electrical properties of these glasses have been studied
by the method of complex impedance in the range from 20 Hz to 1
MHz at temperatures ranging between 20 and 400°c. The activation
energy E, was calculated from the conductivity o according to the

formula
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The values obtained lie in the range 0.46~0.72 aV. At low
concentrations x and y, the value of the activation energy

decrcases rapidly as either concentration is increased but changes

srnly slowly at high concentrations.

5,2, Calculation of mobile Li* ion concentration (251

The system that we are considering can be compared with that
5% an alkali halide such as Nacl doped with cacl, or cdCl,, which
nas been discussed previously (26]. The ca?? or cd?* ions
gubstitute for Na¥ ions in the lattice and, to preserve electro-
neutrality, positive ion vacancies must be introduced simul-
taneously with a concentration equal to that of ca® or cd?*,
Positive ion vacancies behave as negative charges which, when
dissociated from the ca* or ca?* ions, are mobile and can
wwuntribute to the electrical conductivity. The overall activation
energy for the conductivi;y iz the sum of a part connected with
the dissociation of a positive ion vacancy from a divalent cation
anaranother part connected with the diffusion of a positive ion
‘wsacancy under the influence of an applied electric field. 1In our
system the mobile lithium ions are analogous to the positive ion
vacancies. The concentration of lithium ions as a function of
temperaﬁure and dopant concentration is calculated considering an
ensemble of Li,SO, molecules diapersed in a borate glass that is
assumed %0 be a continuous medium (25). If the molecules are
ragarded as being isolated, and we assume that only one Li* ion
can be i1cnized per molecule (these assumptions being valid in the

Low concentration limit at temperatures which are not too high),

the conductivity can be written ag
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where o is the distance of closest approach of an Li” ion to an
Li0~ ion, ro is the distance of closest approach of an Li¥ ion to
an Liso,” ion,

The lcwer limit z, can be estimated frcm Pauling's values
{27} for the S-O distance and the radii for O and Li¥. 2adding
these values cives the result Ty = 2.708. From Pauling's

radii {271 one obtains the value 2.0i for ré.

Using the Einstein relation connecting the mobility nd the

fu

2
Giffusicn ccefficient D, and recognizing that both quantities may
have an activation energy E,, associated with activated hopping,

one can write

_. eb
B = kST
eD0 :ah

one sees that a plot cof ln(aTB/Z) vs. 1/T
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for x = 0 or y = 0 should yield a straight line. Even when
neither x nor y is zero, this plot should still be very close to a
straight line. When the slope of the line is multiplied by - kg
the effective activation energy E; for the conductivity is
obtained.

In this case the parameter np is taken to be 1.0 x 1022 cm™3
while the parameters Dg, Ear and ¢ are varied to give the best
least-squares fit to the experimental data. The mobility activa-
tion energy E,, is determined from the y = 0 data (with only Li,0
present) to be 0.38 eV and is kept at this same value for the

y » 0 data (with'Li2804 present). The parameters Do and ¢ are
determined for each value of y. Calculations were carried out

using both procedures. The results are as follows.

The quantity ln(aTz/z) is plotted éqainst the reciprocal of
the absolute temperature in Fig. 17 for each of the compositions
y = 0.0, 0.05, 0.10 and 0.15. The theoretical curves are straight
lines which fit the experimental data quite well except for some
deviations at the two lowest temperatures. From the values of ¢
determined by the fits to the data, the wvalues of the dissociation

activation energies E_4 and Eéd were calculated

The overall activation energy E, wds determined from

the slopes of the theoretical curves in Fig. 17. The results for

DO, t, Ead' Eéd and the theoretical and experimental values of Ey

are presented in Table 1. One can see that the four quantities
Dy, ¢, Exgq and Eéd show only a weak dependence upon the
composition variable y, and that their magnitudes are physically
reasonable. The magnitude of Do agrees roughly with the relation

£28] D0 = "+rh2/6 where v, and ry are the hopping frequency and
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TABLE 1.

Conductivity parameters for B,05-xLi,0-yLi,SO, without

JDebye~Huckel effects

[a

E!

Eag ad Ea Ea
(cm?- (eV) (eV) (theo- (experi-
s~ 1 retical) mental)
(ev) (ev)
2.00 0.14 8.1 - 0.44 1.02 0.93
J.05 0.16 8.2 0.32 0.44 0.86 0.90
.10 0.22 8.4 0.31 0.43 0.83 0.83
9.15 0.24 8.5 0.30 0.42 0.81 0.82
TABLE 2. Conductivity parameters for B,0,5-xLi,O-yLi,SO, with
Debve-Huckel effects
B Do € Eag Eéd Ea Eq
(cm? (eV) (eV) (theo- (experi-
s'l) retical) mental)
(ev) (eV)
2.00 0.039 8.1 - 0.44 0.93 0.93
3.05 0.041 8.2 0.32 0.44 0.82 0.90
.10 0.056 8.4 0.31 0.43 0.80 0.83
2.13 0.058 8.5 0.30 0.42 0.80 0.82

41




hopping distance respectively. Taking 0.2 cm?s™L as being a
representative value of D, from Table 1, and taking (28]

v, = 10145-1, we f£ind that rh = 11 A; a not unreasonable value.

The conductivity ¢ is plotted against y in Fig. 18(a) for the
temperatures 469 and 489 K, in Fig. 18(b) for temperatures 539 and
569 X and in Fig. 18(c) for temperatures of 619 and 659 XK. As in
Fig. 17 there are appreciable deviations between the theoretical
and the experimental results for the two lowest temperatures, but
for the fcur highest temperatures the agreement is good. One can,
of course, improve the agreement for the two lowest temperatures
by making ¢ temperature dependent.

The analysis which has been presented here differs signifi~-
cantly from the standard analysis(ze'zs) of the role of positive
ion vacancies in the electrica% conductivity of duped aikali
halide crystals. 1In the standard treatment a positive ion vacancy
is regarded as being completely free unless it occupies one of the
12 next-nearest-neighbor sites of a divalent cation. We make no
such assumption in our treatment and take into account the Coulomb
interaction at large separations of an Li* ion from an LiO~ or
Liso,” ion.

The theory which we have developed for the dissociation of
Li,S0, in lithium borate glasses B,04-Li,»0 gives a good
representation of the dependence of the conductivity on the LiyS0,
content and on the temperature. By comparing the experimentally
determined conductivity with the theoretical results one obtains

information concerning the activation energy associated with the

mobility, the diffusion constant and the dielectric constant.

A closer examination of the experimental data would require
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some discussion of the pre-exponential factor related to the
relaxation time and of the effect of interactions between Li* ions
on the conductivity. A detailed examination of the latter effect
would require a more elaborate theory taking into account the
Debye-Huckel concentration dependence of the ionic atmosphere.

such a treatment is presented in the next section.

5.3. Effect of Coulomb Interactions

The effect of Coulomb interactions between free lithium ions
on the electrical conductivity of borate glass modified by Li,O0
and doped with Li,SO, has been examined [29]. The improved theory
shows a distinct lowering of the conductivity, at least for
reiatively low temperatures, arising from the Coulomb interactions
between free Lit ions. At low temperatures a given Lit ion is
slowed by its interactions with its ion atmosphere.

The effect of the Coulomb interaction between free Li® ions
can be taken into account by using the Debye=-Huckel theory in a
form applied by Lidiard (26] to a similar problem. What has to be
done is to replace the dissociation constants K(T) and K'(T) by

Kp-g(T) and KI_(T) given by

1 A 1 3/2 1/2 _1
Ko_x(T) = 7~ exp[;— - 5{(2A) / (4xnpm) / T H

\ 0 1+xrl
1 A 1 3/2 1/2 1
z _ — - —
Fo-u(T) = A7 exp| rg - 21207 (4 npp) 1+xri}]'
where x° = 8rn_pi. The quantities r, and r; are the minimum

distances of Li~ from LisO,” and LiO~ respectively, for which the

1iT ion can be considered to be free. We do not know X,y and ri

a priori, but we anticipate that r,>r, and ri > r6. Their precise
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specification will be given later. Since the new equilibrium con-
stants involve ngm, the mass action law equations are now trans-
cendental equations for the determination of ngqp and must be
solved self-consistently.

If we introduce the quantities n = ng + ng and n' = nj + ng

]
0 B
which are respectively the total concentrations of Lizso4 and

Li,0, we can rewrite

n
n =
0 = N K _ (T
n6 = n: .
1¥n KL (T)

Using conservation of lithium ions, we have

nFT = no + no

[
. = n + n

l+nFTKD_H(T) 1+nFTK6~H(T)

This 1is the equation that must be solved self-
consistently to give the total free Li* ion concentration Nemp.

Once npp is found, we can determine the conductivity ¢ using

the relation

g = epnFT

where z is the mobility. In the presence of the Coulomb inter-
action between the free Li¥ ions, the mobility B for the non-

interacting case must be multiplied by a factor ; given by
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. __nf_ _ mif’

> 7 n+n'! n+n' ‘' -
where
£=1- 3(21/2;1)(11:;1)(21/2+~r1) '
£'' =1 - 3)(2‘1/2+1)(14i:';i) (21/‘2+rc“r1'-) .

The expression for the conductiwvity then takes the férm

g = ey ng nFT'

Using the Einstein relation between the mobility B and the

diffusion coefficient D, we can write

M = &b_
n KBT
eDd
= _ _ah
= XgT exp(- =5)

Where L . is the mobility activation energy. Also contributing
to the overall conductivity activation energy E, are the
iissociation activation energies E 4 and Ead' for Li,SO, and Li50

respectively

The values of the parameters r, and r6

were taken to be those given in section 5.2: ry = 2.7 A and
r6 = 2.0 A. The values of the other parameters were determined
as fcllows. For the case y = 0 (no Li,SO, present) with free-

iithium-ion interactions neglected, the values of Dy, ¢ and Eah
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were determined by making a best fit of the calculated conduc=
tivity to the experimental data. 1In the case of ¢, the value

reflects additional experimental data not considered in section

Wy,

.2. The value of E_ . obtained, 0.48 eV, was used in all the
subsequent calculations. For each case with y » ¢ and free-ion
interactions neglected, we redetermined D,y and ¢ to give the best

fit to the data.

when the interactions between free LiT ions were included,
the values of Dy, Ir; and ri were obtained by a best fit %o the
data, but the values of ¢ were mgintained the same as in the non-
interacting case. Using calculated values of the conductivity o,
the vailues of the activation energy E, were found from the slope

of the plot of ln(aTB/z) vs. 1/T. The best values of ra and ri
were determined to be r, = 3ry and ri = }ré, The values of the
remaining parameters are presented in Table 2.

The results for ¢he éonductivity are presented in Figs.
19-2: for the various compositions and temperatures considered.
Except for the highest temperatures anq Li,S0, concentrations,
there is a small but distinct lowering of the conductivity which
arises from the Coulomb interaction between the free Li™ ions.
Although the interaction leads to an increase in the free-ion
concentration due to shielding of the negative ion potential, this
effect is more than offset by a reduction in the mobility. A
given ion is slowed by its interaction with its ion atmosphere. As
the temperature increases, the lowering of the conductivity
decreases and is hardly evident at the two highest temperatures.
This behavior can be understood on the basis that an increase in

temperature increases the random thermal motion of the Zfree Li™
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ions and reduces the correlations which arise from the Coulomb
interaction between them. These results are consistent with the
picture that the lithium borate glasses behave as weak electro-
lytes with only a small fraction of the Li,O and Li,SO, molecules

ionized at the temperatures employed in the experiments.

wn

.4. Summary

The fast ion conductivity in borate glasses such as
B,05-xLi,0-yLi,S0, calculated from a statistical mechanical theory
based on the assuﬁption of a pargial dissociation of the dopant
salt, 2i,S0., and the modifier, Li,O0, compares well with the
experimental results. The temperature dependence of the conduc-
tivity obtained experimentally is well reproduced by the theory.

In the theoretical treatment given in section 5.2, the Coulomb
interaction tetween free Li% ions was not taken into account.

This theory already gives the possibility of obtaining informaticn
concerning the activation energy associated with the mobility, cthe
diffusion constant and the dielectric constant by comparing the
experimentally determined conductivity with the theoretical-
result.

An improvement in our treatment is achieved by the calcula-
tions presented in section 5.3 which show that a distinct lowering
of the conductivity, at least for relatively lcw temperatures,
arises from the Coulomb interaction between free Li* ions. At low
temperatures a given Li* ion is slowed by its interactions with
its ion atmcsphere. As the ion atmosphere becomes more diffuse ac
higher temperatures, the effective slowing of the motion of an

individual lon by the Coulomb interaction with its neighbors

decreases.
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A further refinement in the theoretical treatment of fast ion
conduction may come from the consideration that the LiO~ and
LiSO,” ions fixed at given sites in the glass network may also
have the cossibility of dissociating to vield Li* ions which will
further contribute to the ccnductivity. This process is less
crobable than the first dissociation, because its activation
energy is significantly larger than that for the first dissocia-
~ion. At sufficiently high temperatures, the influence of the
second ¢éissociation would be indicated by an increase in the
apparent activation energy.

P

5. Lithium motion in borate glasses

6.1. iIntrcduction

The infrared spectrum of lithium borate glasses

w
™~

Q
LJ

¢<

-xLi,0-vLi~50, can be regarded as consisting of two parts:

the lcw Ireguencv demain which concerns the charge carrier

dvnamics and the higher frequency region concerning the host
dynamics.

Iin sections 2 and 3, the dynamical properties of the host
network were examined. We shall now turn to free carrier
dynanics.

structural and dynamical properties are generally investi-

gated by Raman spectroscopy (301 and the ionic conductivity is
measured by means of complex impedance spectrosceopy {251.
infrared spectroscopy is a complementary method offering the
sessibility of deducing the frequency-dependent conductivity at
icw frequencies and the conducticn ion dvnamics.

The infrared reflectivity »f 3,0,-xLi,O0-yLi,SO, increases

considerably at frequencies below 500 cz™*. This high reflectiv-

v
(5]




ity corresponds to the motion of the Lit ions and allows us to
deduce the frequency dependent ionic conductivity. Analysis based
on a simple double well potential model leads to a picture in

which the characteristic vibrational fr2quencies of the Li¥ ion is

distributed over a large frequency ranyz corresponding to differ-

ent site configurations. The extent of the frequency distribution

is a function of the free ion concentration. A drastic increase

of the damping coefficient is observed when the concentration
increases.

The potential barrier regulating the motion of the Li¥ ions
between different site configqurations also increases with
increasing LiT ion concentration which corresponds to a decrease

of residence frequency and increase of residence relaxation time.

6.2. Description of the Mgdel

Infrared and Raman spectroscopy (30] as well as nuclear
magnetic resonance measurements (31] indicate that with increasing
modifier concentration x the amount of BO, groups increases up to
a maximum of 40% of boron atoms in tetrahedral coordination for
X = 0.4, Above this concentration the amount of BO, decreases.
The relative abundance of the BOZ ions in the vitreous matrix
suggests that the small Li* ion spends a certain time oscillating
against that radical. The motion of the Lit ion at long distances
through the glass medium can be characterized by an activation
energy E: much larger than the -double-well potential & (Fig. 22).
The LiT ion should overcome this potential when moving from one
position in the n=ighborhood of Bol to another. Thus, the dynam-
ics of the LiT ion could be schematically treated within the

framework of a double potential well model.
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Fig. 22. Scheme of double potential well intervening in the

motisn of the Li¥ ion through the barrier potential a.
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The equation for the oscillatory motion of the Li™ ion

considered as a Brownian particle can be written as

mx —myx + U'(x) = £(t) ,

with
: X
and

(X V4 X Y2
U(x) = alls— - 2|
() - =697
U(x) describes the double potential well with minima situated at
x = zXq. The damping coefficient y and the random force f(t)

describe the interaction of the mobile ions with the thermal

vibrations of the network.

Following the treatment given by Schneider et al. (32},

frequency~-dependent conductivity can be written in the form
o(w) = fr(w)

Here f is the oscillator strength defined as

~
&

NLie

f = ————

Bri

and r{(w) 1is the frequency dependent scattering time defined by

the expression

r(w) = [2+7+x(2)]-l,
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with z = iw, and the memory function

z) = 222 . l-a
x(2) “olz T z-b]
. =2 = " x
Here wy = <U®>/m ,
a = (3<x2><U">]"l ,

b = 52(1-a)/ (ab r=r),

<...> is the thermal average, and ﬁ-l = kBT* The: time » is
Tesc
2 *

related to the escape time by 7 =

The adjustable parameters for comparison with experimental
data are the oscillator strength £, the lithium vibrational
frequency in the site w g the damping coefficient v, and the
dimensionless parameter § related to the height of the potential

parrier § = 4a8. With the frequency dependent conductivity o (w)

in hand we can calculate the dielectric function

c(u) = ¢+ 41rio!w!

© w 4

and confront the reflectivity which is obtained experimentally

_ 2
Je=1

j:z-i- 1l

R =

6.3. Comparison with Expefimental Data-

Infrared reflectivity measured with the Bruker type IFS113

vacuum infrared Fourier spectrometer give broad spectra over the

range of 10 - 3000 em™t. 1In Fig. 23 is shown the reflectivity

spectrum of a glass with composition B,0;-0.7Li,0 taken at room




El

1%)

&

Reflectivily

(=]
L

06 . L - i1 = l N - §

Wavenumber (cm™)
fig. <3. Reflectivity spectrum of borate glass 8,04-9.7L1,0
st 300¥. The full line is the calculated curve and the points are

sxverizental data.
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temperature. The dotted line represents the experimental points
and the continuous line is the calculated curve.

Figure 24 shows the frequency dependent conductivity o¢(w) for
the same sample, the real and imgginary parts of the dielectric
constants and the energy loss. The points represent the Kramers-
Kronig inversion of the experimental reflectivity and the
contiruous line gives the calculated curves. The maximum of
Imie(~)]) in Fig. 24 situated at v, = 40 cm™t determines the
relaxation frequency of the Lit ion jumping from one potential
well to another through the barrier a.

Wwhen a dopant, such as Li,SO,, is added to the borate glass
the ionic conductivity increases. A series of doped borate glasses
3,0,-0.7Li,0-yLi,S0, in a broad concentration range of the dopant
salt, 0 £ y < 0.5 has been studied with the same experimental
technique. The remarkable feature in this investigation is that
“hereas the frequency of the maximum of the broad band vy does not
change with concentration, one observes a significant change of
the damping coefficient y. The damping coefficient varies from
v = 240 cm_l when vy = 0 to v = 62 cm_l for vy = 0.5. From the
conductivity s(w), the real and imaginary parts of the dielectric
function, Re(e¢) and Im(e), and Im(-1/¢) deduced from the reflec-
tivity spectra for different concentrations y of the dopant
Li,S0,, one can deduce that the relaxation frequency vy is now 20
-1

cm -, a drastic decrease with increased doping.

From Fig. 25, which is a summary of the experimental results,
one observes that while the characteristic frecquency wg remains

constant, the damping decreases and the oscillator strength £

increases with increasing dopant concentration vy.
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From the results shown in Fig. 24 one can see that the char-
acteristic frequency for the Li% ion vibration in a nondoped
borate glass B,0,-0.7Li,0 is widgly spread over a large frequency
range from :130-600 cm™! but has a maximum at wy = 389 cm-l, and
1

nas the damping constant y = 243 cm The resonance centered at

389 cm”*

is very broad which is an indication that the configura-
zion of the BOZ site attracting the Lit ion is not unique. This
result suggests rather that Li* is found in different sites in the
borate glass at different space positions with regard to the BOZ
ion. 1In each specific site, Li* has a characteristic vibration
but because of the large variety of site configurations, the
characteristic frequencies are spread over a broad fregquency range
with a maximum in the distribution around 390 cm™}. At low Lit
concentration the whole spectrum of different <ites is available
for Li* occupation and the distribution of occupied sites is quite
broad. When the Li* concentration is increased with the addition
of the dopant Li,SO, into the borate glass B,05-0.7Li,0, the most
frequent site configurations become more readily occupied, the
occupancy density of closely resembling sites becomes greater, and
the dispersion in the distribution decreases. The increasing
£i*-Li¥ coulomb interaction forces the Li* ion into the most
favorable configuration. Thus, the resonance sharpens signifi-
cantly which is indicated by a considerable decrease of the
damping constant, i.e., an increase of the relaxation time, the
time the Li¥ spends in a site of given configuration. The oscil-
lator strength f increases, of course, with the increase of the
dopant concentration because the number of Lit ions increases.

The relaxation frequency of Lit, w. = 2

5 given by the maximum

Yesc’




1

of Im(e) 1is v, = 40 cm — for the nondoped borate glass. This

gives a potential barrier &4 = 21.7 meV. For the doped glasses we

20 em~*

i

obtain Vs

abundant potential wells are twice as deep for high Lit concentra-

and A = 40 meV. The most probable or the most

tion. This is compatible with a larger residence time and smaller
damping constants, i.e., small escape frequency. From the
definition of the oscillator strength one should

e expect a linear relation between Ny; and £ with a given slope
(ez/mLI). Comparison of the values of £ obtained from the fit
with the experimental data, fexp' and that calculated with eq.

@ (6.5), foays, We see a considerable difference. Considering the
values listed in Table 3, one observes that fexp is practically
double f.,;. This suggests that e and my; are not the charge and

Py mass of the frz= Li™ ion but are instead the effective charge (e*)
and effective mass (m*) as modified by the polarization induced in
the medium. The sites in which Li% vibrates are polarizable, which

must be taken into account when calculating £

The frequency dependent conductivity sum rule is different for

a rigid and for a polarizable medium. For a rigid medium we have

o © N..e?

[ o(u)dw = % El ,
o Li

whereas for a polarizable medium the sum rule is

*2
© N..e e +2
- r _Li © 2
fo c(w)du = > e ( 3 ]

* . - . .
Here e is the Szigeti effective charge and n* the reduced mass

which for a tetrahedral oxygen environment of the Li¥T will be

given, f{or example, by
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TABLE 3. Values of lithium concentration, dielectric colnstant,

and oscillator strength for various concentrations y of the dopant

-3 ’ ’ -2 -2

y Ny (em™™) ¢ foxp(cm 2 foay(em™@) £ /f0a
0.0 2.2 1022 2.06 21774 12204 1.784
0.1 2.28 1022 2.06 24704 12648 1.953
0.2 2.32 1022 2.18 27369 12869 2.127
0.4 2.38 1022 2.13 29512 13202 2,235

M. .nm

m*x = a%z%. = 0.68 m.. .
LiT*%o Li

The ratio e*/e is given by

- [ fexp m* ‘a+211/2
foo1 Mz 2

sor different dopant concentrations y we obtain the values given

in Table 4.

This result shows that, in fact, the polarizability of the
. . 4
3203-0.7L120-Li2504 network does not affect considerably the Li
. x -
oscillatory motion because the effective charge e 1is not very

different from the free Li™ charge e.
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TABLE 4. Effective charge of Li*t for various concentrations y of

the dopant.

y e /e
0 0.81
0.1 0.85
0.2 0.86
0.4 0.89

7. Conclusions

After long discussions in the litérature it now seems
established that the v-B,0, network is mainly formed by boroxol
rings connected with B-0-B bonds and BO5 triangles. Direct
calculation of the vibration of boron oxide glass, using the Bethe
lattice approximation, show that the boroxol ring vibration at 800

cm remains sharp even when an infinite network is formed.

The effect of the addition of the modifier Li,O0, was investi-

gated experimentally by Raman and infrared spectroscopy and theo-
retically by network dynamics and lattice dynamics calculation.
The rodifier was found to increase the number of free lithium ions
which act as charge carriers, and also to significantly modifify
the host structure through the transformation of trihedrally
coordinated boron atoms into tgtrahedrally coordinated boron. The
concentration dependence shows that this second effect goes

through a maximum for x = 0.4 and then decreases as a result of
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the formation of BO, groups with non-bridging oxygen atoms which
carry a negative charge. Compared with the experimental data, the
results of network and lattice dynamics calculations seems to give
an adequate picture of the structure and vibrational response of
lithium doped borate glasses.

Introduction of dopants in the form of alkali halide salts
produces by dissociation an additional free lithium concentration
and also a modification of the host confiquration dependent on the
size of the anion. Flourine enters in the network in substitu-
tional positions forming BOsF and BO,F, units. Chlorine, bromine
and iodine enter interstitial positions which produces breaking of
B-0-B links and formation of BO, units. This modification of the
boron oxygen network results in a less linked network facilitating
the free ion diffusion. The effect is more pronounced for LiI auu
decreases with the anion size.

Doping with Li,SO, leads to analogous effects. The effect of
Li,s0, on the Raman spectra can be understood as simply a super-
position of the vibrations of the host network and that of the SO,
groups. The modifications of the host network with preferential
formation of diborate groups tends to produce an expansion of the
network in order to accommodate the sulfate ions and facilitate
the lithiuvm mobility.

The ion conductivity of lithium borate glasses has been
addressed by developing a statistical mechanical theory of
conductivity based on the assumption that the dopant behaves as a
weak electrolyte which dissociates to provide free Li¥ ions and
high ionic conductivity. The agreement between the theoretical

results and the experimental data is good for physically reason-




able values of the parameters that characterize the theory.

Taking into account the Coulomb interactions between free Li™
ions shows a distinct lowering of the conductivity, at least for
relatively low temperatures. This result arises from the Coulomb
interaction between free Li? ions and the fact that at low
temperatures a given Li% ion is slowed by its interaction with its
ion atmosphere.

Lithium motion in borate glasses has also been investigated
by far infrared spectroscopy and analyzed on the basis of a double
well model. This analysis shows that the characteristic
vibrational frequencies of the Li%t ion is distributed over a large
frequency range corresponding to different site configurations.
The extent of the frequency distribution is a function cof “he free
ion cuucentration. A drastic decrease of the damping ccefficient
is observed when the ccncentration increases.

The potential barrier regulating the motion of Li¥ icns
setween different site configurations also increases with
increasing Lit ion concentration which corresponds to a decrease
of residence frequency and increase of residence relaxation time.

In summary the experimental and theoretical results presentec
here gives a fairly broad and clear picture of the nain features

of both the matrix dynamics and the 1lithium free ion dvnamics of

| B

ithiun doped borate glasses.
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B. Effect of Intercalated Lithium on the Direct Band

Gaps of Indium Selenide

P. Gomes da Costa, M. Balkanski* and R. F. Wallis

Physics Department, University of California, Irvine, CA 92717
Abstract

The effect of intercalated lithium on the g~ and y-polytypes
of InSe has been investigated using a tight-binding method. The
energy bands of the pure polytypes were calculated and the
results comparéd with previous work. The tight-binding
parameters associated with intercalated lithium atoms were
obtained using tabulated atomic functions. The modifications of
the energy bands and Fermi level produced by the introduction of
one lithium atom per unit cell were calculated for the lowest
potential energy position of the lithium atom in the Van der
Waals gap between layers. The intercalation induced changes in
the smallest and next-to-smallest direct band gaps were deter-

mined and compared with experimental data.
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1. Introduction

The insertion of lithium into layered materials has
attracted significant interest as a consequence of the possible
use of such materials as electron exchange electrodes in solid
state batteries. Such an application is related to the inter-
calation capacity and the modifications of the electronic
properties of the bulk material. Intercalated Inse(1) gives a
voltage of 2.6V against a lithium anode and exhibits a change in
conductivity of up to two orders of magnitude.(z)

InSe is a l.yered material consisting of two-dimensional
Se-In-In-Se layers between which the binding is weak due to the
Van der Waals forces. The space between successive layers is
known as a Van der Waals gap. The stacking of the layeré is
always compact, but there are four possible stacking arrangements
leading to the four polytypes 3, ¢, v, and §. Only three of
these polytypes (8, ¢, y) have been observed for InSe. Bridgeman
grown crystals are generally of the type y. The difference in
totai energy between the various polytypes i; so small that one’
practically always finds a high density of stacking faults in =z
given sample.

Although most of the experimental results that have been
obtained are for vy-InSe, no band structure calculations are
available in the literature for this polytype. All existing
calcuiﬁtions are for the g and ¢ polytypes which have a simpler
first Brillouin zone. The first band structure calculation for
this family of materials was made for Gase.(3) A calculation for

InSe within a tight-binding model has been carried out in a two-
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dimensional approximation.(4) Extensions to the three-
dimensional case have been developed using the pseudopotential
method (3) and the tight-binding method. (6) Including the spin-
orbit interaction in the tight-binding calculation{?) has a non-
negligible effect on the InSe band structure. Pseudopotential
calculations for ¢-InSe are also available,(s) but without spin-
orbit interaction.

Lithium insertion(®:10) in Inse has been shown to affect
both the electronic and optical properties. Possible inter-
stitial sites for Li atoms in y-InSe have been discussed and
their relative energies determined. (11) pithium diffusion
paths(lz) in y-InSe have also been determined by ab initio
calculations.

Lithium insertion‘®/10) in Inse has been shown to affect
both the electronic and optical properties. Possible inter-
stitial sites for Li atoms in y-InSe have been discussed and
their relative energies determined. (11) Lithium diffusion
paths(12) in y-Inse have also been determined by ab initio
calculations.

The optical properties near the band edges of pure InSe have
been investigated and compared with the calculated band
structure. (7) Sharp excitonic peaks are obse.ved in the
absorption spectrum at low temperature corresponding to the three
absorption thresholds. The first threshold at 1.3 eV is related
to the direct absorption between the s, p, valence band states
and s conduction band states. The second at 2.5 eV is related to

transitions from Pyr Py valence band states to s conduction band
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states, and the third at 2.9 eV is related to transitions from
the spin-orbit split-off valence band to the s conduction .ad.
More recent results(13) on pure InSe at 10K with the electric
vector of the radiation perpendicular to the c-axis allow one to
distinguish the n=1 and n=2 excitonic transitions as well as the
L0 phonon replicas of the n=1 excitonic state.

The effect of Li insertion on the interband optical
absorption peaks is rather weak, but nevertheless, clearly
observable. In Fig. 1 are shown the shifts in frequency of the
smailest direct band gap E, and the next-to-smallest band gap E,
as functions of the lithium content.(10) We see that the E, gap
increases in frequency as the Li concentration increases, whereas
the E, gap decreases in frequency.

The excitonic transitions persist after Li insertion, which
suggests that all of the Li 2s electrons do not transfer to the
conduction band and thns transform the semiconducting InSe into a
metal. (14/15)  1f we had a metallic transition, the Coulomb
interaction between the electron and hole of the exciton would
be screened and the excitonic state would be washed out. The
persistence of the excitonic transitions in highly intercalated
InSe suggests that the Li 2s electrons form a low mobility
impurity band or are efficiently trapped into localized states.

The photoluminescence spectrum of InSe is significantly
modified by the intercalation of Li. A new photoluminescence
peak appears at a photon energy somewhat less than that of the
fundamental exciton peak of pure InSe as shown in Fig. 2. This

new peak may be associated with the Li-2s band lying in the
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FIG. 2. Photoluminescence spectra for y-InSe before (a) and

after (b) lithium intercalation at 5 K under 1.916 eV excitation
by a Kr* laser.
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fundamental gap of InSe.

Theoretical Development

We have developed a tight-binding -scheme for calculating the
electronic band structure of both g- and y-InSe. Our procedure
is based on the overlap-reduced semi-empirical tight-binding
method of Doni et al.(18) yho considered the case of f-InSe.

The Slater-Koster procedure(17) was used to express the overlap
and interaction integrals of the tight binding method in terms of
the basic overlap integrals Sig and interaction integrals Vij'
Only two-center integrals were considered.

For pg-InSe we took the values of the parameters Sij and Vij
from the tabulation in Doni et al. for the nearest-neighbor
In-In, In-Se, and Se-Se interactions both parallel and perpen-
dicular to the c-axis. The atomic states considered are Se 4s
and 4p and In 5s and 5p whose energies were taken from Doni et
al. We also used the crystal field parameters K tabulated by
Doni et al. Interactions beyond nearest neighbors were included
by scaling the Doni parameters with a factor d~2 where d is the
interatomic distance of the interacting atoms. The interactions
were cut off at d4=8.77A.

The structure of y~-InSe is simpler than that of g-InSe,
because the former has only four atoms per unit cell, whereas the
latter has eight atoms. The difference in structure arises from
the difference in stacking of successive layers; the interatomic
distances within a layer are essentially the same in both poly-

types. In view of these similarities, we have taken the basic

overlap and interaction parameters for y-InSe to be the same as
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those given by Doni et al. with the exception of the interlayer

parameters S po) and V (ppe). These parameters

se-se (P Se-Se
together with the crystal field parameters K(In 5s), K(Se Py)
K(Se py), and K(Se p,) were varied in order to reproduce the
experimental values of the smallest band gap E, and the next-to-
smallest band gap E,. The values thus obtained are tabulated in
Table I.

Having established the tight-binding scheme for the pure g-
and y-polytypes of InSe, we then proceeded to generalize the
scheme to include the presence of intercalated Li atoms. We
assume that the Li atoms occupy the sites of lowest potential
energy(lz) (the 2A5_, sites) in the Van der Waals gap between
layers. Since intercalation of lithium leads to only a very
small increase in the interlayer spacing, we have neglected any
change in the tight-binding parameters of InSe itself. The
overlap and interaction pérameter for the interaction of a Li
atom with the nearest Se and In atoms were calculated using the
tabulated atomic functions of Clementi and Roetti.(18) The '
electronic band structure of the intercalated InSe was then
obtained by diagonalizing the Hamiltonian matrix. The changes in
the E, and E, gaps thus obtained turned out to be large. The Li
parameters were then varied until agreement was achieved between
the theoretical and experimental gaps. The resultant values for
the Li parameters are listed in Table II.

Numerical Results

The electronic band structure of pure ¥-InSe which we have

obtained is shown in Fig. 3 for various directionsin the first
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TABLE I. Values of the tight-binding parameters for y-InSe. The

notation is that of Ref. 16. ¥ and J are in Rydbergs.

Se~Se interlayer parameters crystal field parameters

S (ppo) -0.010 K(Se 4p,) 0.0203

V (ppo) 0.002 K(Se 4p,) 0.1143
K(In 5s) -0.0373

TABLE II. Values of the tight-binding parameters for lithium-

intercalated v-InSe. V and K are in Rydbergs.

S v K
Li-Se (sso) 0.02636 -0.000318
Li-Se (spo) -0.0077 0.0027
Li-In (sso) . 0.004143 -0.000313
Li-In (spo) -0.04665 0.000669
Li (2s) - -0.066
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Brillouin zone. The smallest direct gap (E,) occurs at ' between
the s, p, valence band and the s conduction band. The next lower
direct gap (Ez) occurs at I' between the Py py valénce band and
the s conduction band.

———

For the case of pure‘p—InSe, we plot our results for the

band structure in Fig. 4.: These results are very similar to those
of Doni et al. In particular, both sets of results give an
indirect gap between I' and M that is somewhat smaller than the
direct E, gap at T.

In Fig. 5 we present the band structure for lithium-
intercalated y-InSe with the'composition Lid‘sInSe and the Li
atoms occupying the A4_, sites in the Van der Waals gap between
layers. The band associated with the Li 2s state is seen to lie
just below the conduction band edge. The effect of the
intercalated lithium on the InSe bands is toé small to be observ-
able on the scale of the figure. However, the effects on the Eq
and E, gaps are revealed by the numeriéal results given in
Table JII. The excellent égreemént between the experimental and
theoretical values is a direct consequence of the choice of the
Li parameters.

The occurrence of the Li-2s band in the fundamental gap of
InSe provides a natural explanation for the new photoluminescence
peak produced by Li insertion. Excitation with photons having

energy greater than the band cap creates electron-hole pairs. &an
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Table

III.

Values of the E; and E, energy gaps with and

without lithium intercalation in y-InSe.

pure y=InSe

lithium-intercalated y-InSe
1.3335 eV 1.3368 eV
2.5451 2.539
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electron in the Li-2s band can then recombine with a hole
accompanied by the emission of a photon whose energy is equal to

the difference between the valence band edge and the lower edge

-0of the Li-=2s band.

.Conclusions

A tight-binding: scheme has been developed for pure S-InSe

and y~InSe using the overlap-reduced semi-empirical method the
procedure -satisfactorily accounts for the direct energy gaps of
the two pdlytypes.' The tight-binding scheme has been generalized

to include the effect of intercalated lithium atoms. The shifts

in the direct gaps and the appearance of a new peak in the photo-

luminescence spectrum predicted by the calculations are in

agreement with -experimental optical data.
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¢. Lattice Dynamics of y-InSe Containing

Intercalated Lithium

P. Gomes da Costa, M. Balkanski,* and R. F. Wallis
Department of Physics and Institute for Surface and
Interface Science
University of California, Irvine, .CA 92717

ABSTRACT

The lattice dynamics of the y-polytype of

the layer compound InSe has been investigated
using a model containing short-range central
forces and long-range Coulomb interactions.
The normal mode frequencies and eigenvectors
were determined by diagonalizing the
dynamical matrix. The results have been
correlated with the infrared and. Raman
spectra of Y-InSe. The effect of

intercalated lithium atoms on the vibrational
modes -has been investigated both
theoretically and with the aid of Raman
spectra.

L, INTRODUCTION

In a number of solid state batteries currently under
investigation, layvered materials are used as electron
exchange electrodes, since they can accommodate considerable
amounts of intercalated lithium. For such an application it
Is essential that the electrode material have a sufficiently
high ionic as well as electronic conductivity. A material
that satisfies these requirements is InSe which can
Intercalate relatively largé amounts of lithium with only a
slight expansion of its lattice {1,2].

InSe is a lavered compound having complex layers in

which atomic lavexrs of Se, In, In, and Se are bcund together




by covalent bonds with some ionic character. These complex
layers are themselves bound to one anothér by weak Van der
Waals interactions with a so-called Van der Waals gap
between layers. There are four -possible stacking
arrangements of the complex layers leading to four polytypes
designated f,€,7, and §. Since the experimental results to
be discussed are for the y-polytype, we shall focus our
attention on this ‘polytype.

A microscopic understanding of both the electronic and
ionic conductivity of lithium-intercalated y-InSe requires a
knowledge of the lattice dynamics of this: system. Of
particular importance is information concerning the forces
of interaction between intercalated lithium atoms and nearby
selenium and indium atoms.

In this paper we present the results of @ theoretical
investigation of the lattice dynamics of ¥-InSe both with
and without intercalated lithium. We develop the lattice
dynamical model in section 2. The values of the force
constants and calculated phonon dispersion curves for pure
Y-InSe are presented in section 3. Similar results are
presented in section 4 for lithium intercalated ¥-InSe.
Conclusions are presented in section 5.

2. LATTICE DYNAMICAL MODEL

The first step in setting up the lattice dynamical
model is to summarize the pertinent information concerning
the structure of InSe. The y-polytype belongs to the

trigonal system, and its space group is cﬁv . The primitive
translation vectors can be written as (3] :

L=(v3/3)ai+ck (1a)
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o
is. the lattice constant perpendicular to the layers, and

—- . =

® i,j;k are unit vectors in the x, y, z directions,

respectively. The values of a, and c, are (4] 4.00 A and

o
8:.44 A respectively.

The primitive translation vectors of the reciprocal
lattice can be oébtained from 4,5,/ and -are found to be

=27(2/3a, ) +(1/ 3¢, )]

1

S

(2a)
b, =2a~(1/3a, ) +(1/a,)] +(1/3c,)E ] (2b).

-

b, =2a]~(1 /N30, )l (11 a,)] +(1/ 3¢, )E]

(2¢)

Diagrams of the stacking of the layers of y-InSe and its
fi;st' Brillouin zone are shown in Fig. 1.

Since InSe is a polar semiconductor, the chemical bonds
which bind neighboring atoms together have both covalent and

ionic character. The interatomic forces should, therefore,

e have a short-range part associated with the covalent
character of the bonds and a long=range Coulomb. part
associated with the ionic character of the bonds. We
therefore write an element of the force constant matrix

L ®,4(/K;I') as the sum of two céntributions,

A 1 - (o ) N 1o
D oI5 k)= O (I 1K) + D (I3 ) i (3)
4
88

o
® h= —(*/3- / 6)05?4:(1 12)a,] +c,k (1b)
1 == A . ?—f 1/ 2 7 r
5 ==(\3 16)a,i —(1/2)a,j +c;k o
@
where aj is. the lattice constant parallel to the layers, c




(b)

Fig. 1 {(a) Stacking of layers and (b) first Brillouin
zone of Y-InSe. 1In (a) the open circles are Se atoms and
the closed circles are In atoms.

where (Dgp(lx';l'lr') is the contribution from the long-range
Coulomb interactions, (Dzﬁ(lr,l'x’) is the contribution from
short-range non-Coulomb interactions, the index pair Ix
designates the kth atom in the /th unit cell, and «&,B denote
Cartesian coordinate components.

For the non-Coulomb interactions we adopted the
central-potential model which Polian [5] found satisfactory
for the related material GaS. With a central potential ¢ (r)
dependent only on the distance r between the interacting
atoms, one can write the contribution to ®L(IkIx) for
Ik#I'K' in the form
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D (KT k) ==, (1G] k) (%)

where

] ; xax B ] _ 1 [ 5 (]
Pl k) = { ,2”47 n,(r)r;q; olr) ] +-;igq“,,(r,) }’|r=| ey ¢ (5)

R(lx) = %K) -20k) (6)
%(Ix): is the position vector of -atom /K in the equilibrium
configuration, and primes denote differentiation with
respect to- argument. A given interaction consequently
involves two force constant parameters, ¢, .(r) and @' ..(r)/r,
which: will henceforth be désignated by A and B,
respectively.

The short-range model empldyed includes thé following
interactions:

1. In-In

first neighbors

2. In-Se first neighbors
3. Se-Se interlayer

4. In-In second neighbors
5. In-Se second neighbors

‘The corresponding values of A and B are designated by A;, B;
with i = 1,2,3,4,5.

The long-range Coulomb interactions are characterized
by the effective charges of the In and Se ions. Since the
in-Se bond is partly ionic and partly covalent, we expect
the magnitudes of the effective charges tc be less than the
magnitude of the electron charge. From the symmetry and
stoichiometry of y-InSe and electroneutrality, we conclude
that the effective charges of the In and Se ions are equal

in magnitude and opposite in sign. The large anisotropy of
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where M, is the mass of atom X.

‘the crystal leads us to- introduce a tensorial effective

charge of the form [5]

[z 0 0
z*¥e=|0- z 6 e (7)
0 0 z;

‘This. form. for the effective charge accounts for the fact
that the polarization produced by displacements parallel to
the layers is -different from that produced by displacements
perpéndicular to the layers. 4
The contribution o§ the long-range Coulomb: interactions

‘to the force constant matrix was evaluated: using the Ewald

-technique by expressing the -elements Of thi’s matrix in terms
-0f a sum over the direct latfice and a sum over the

reciprocal lattice. The elements of the Coulomb

Contzibution to the dynamical matrix Dfﬂ(l?,xx") were then

‘obtained using the relation

(7. _ I . <E{z(x)=5(re)) .
DE (ki k') = —=—=—3 0%, (I &) 1" ,

cp( ) MM;»; (il K)e (8)

The contribution of the
sum over the direct lattice to Dfﬁ(k,KK') is given by

DG (Brr), =~ 2 ()

\l, MM,

+

3 3 - T A
Mnr' T’}; exex" ; Hcﬁ[g(l; KK‘ )] (9)

x
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where e, is the -effective charge component :0f ion K -given

by fz;ue,—,, 71 was taken to have the value ﬁ/g—,,); is the
equilibrium nearest-neighbor separation, :
L(lxe) = nf(x)~2(Ix) (10)

and

Hog[ S kR)] = H 5 (£):

C ¢ 2 '
CB[(sErfc(C)+ﬁ(C2+2) ]

cp[gs E'fC(C) T;C—z‘e“'] . (1)

‘The reduced effective chazge compofients z,, and Z,, satisfy
Z,. = -z, = z, with z, specified by Eq. (7) -- i.e.,
Z,=z,=2z and 7, =7z

7Th,e} contribution of the sum over the reciprocal lattice
to DS(k;xx) is given by

4| ene koks _sapent
Da,ﬂ(k KK’) ﬂ{\fM ;;f{ X R

+ z (Ga, +lic)(?g +kﬂ)
om0 lG + k[

e.|a+irun=efa-[z(x)-§(<)l ]
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X G E b -X
: |o| 1an? 1R (r)l} (12)

-

reciprocal lattice vectors ‘G

where: the ¢ are given by

Ge=mb+ mb, +mif,

and m3, my; m3 are integers.
“The full Coulomb: contiibution td the dynamical matrix
is given by

fop(EE-xx) DS (k: 5 ) +D% (ks ) (14)

Addvng this result to the short=range contribution to the

-dynamical matrlgﬂlk¢0k, ), where

. N (7 N k{3 (ix)-3(r )]
: Dlkixk')== <I> Il R)e {¥5)
D% (ki k) N (sl &) (15)

yield$ the full dynamical matrix Dy(kixx) :

o
| Doy (ki) =055 ([s ki) + DY) (16)

The normal mode freguéncie$ and eigerivectors were obtained

® - ; ) L
. by dizgonalkizing: the full dynamical matrix.

3 MODEL -PARAMETERS AND PHONON DISBERSION CURVES FHR PURE

5? —71 nﬁs é .

The central potential model which we -émploy concains
twelve parameters to be determined: Ar,.LT,AS, Bys.:-.Bg,
ilable for 7-iInSe,

g;z; The -experimental data that are avai
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niamely; infrared and Raman spectra, are insufficient to: make
a -uniqué detefmination of these parameters. We have
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cattéring),; elastic constants; and infrared and

Raman data. We ther fine=tuned the values of the parameters

o reproduce the frequencies and

é optical modes of long wavelength
dérived from infraréd and Raman data for y-InSe [6] which

g-

2. The values Of the model parameters

(20

[ I ‘thus determined are given in Table

94




Table 1.

Short-range and Coulomb parameters for 7¥-InSe.

The units for the A and B parameters are N/m.

i 1 2 3 4 5
Ay 78.35 32.17 0.5 7.0 3.4
B; 4.65 31.0 -0.196 -8.584 0.9
z;* 0.71 0.43 - — —

The elements of the dynamical matrix were next
evaluated using the tabulated values of the model

narameters.

Diagonalization of the dynamical matrix for

various values of the wave vector k yielded the normal mode

frequencies and eigenvectors.

The dispersion curves were

constructed for several high symmetry directions in the

Brillouin zone and are presented in Fig. 3.

Since there are

four atoms per primitive unit cell in y~InSe, there a:s.

NORMAL MODE FREQUENCY (cm™')

Fig. 3
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Phonon dispersion curves for pure y-InSe.
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twelve normal modes for a given value of k. There is
considerable dispersion of the normal modes propagating in
directions not perpendicular to the layers as a consequence
of the strong intra-layer binding of the atoms. However,
the weak interlayer binding (note the small values of Ay and
B4 in Table 1) leads to nearly flat dispersion curves in the
direction perpendicular to the layers, as evident in Fig. 3
for the I'Z direction.

4, MODEL PARAMETERS AND PHONON DISPERSION CURVES FOR
LITHIUM INTERCALATED Y-InSe

The intercalation of lithium into Y-InSe leads to new
1 and 388 em™!. 1In
addition, peaks associated with pure y-InSe are modified by

peaks (6] in the Raman spectrum at 92 cm

plasmon-phonon coupling [6]. We have made a theoretical
investigation of the case in which there is one lithium atom
per primitive unit cell and that atom occupies a site of
lowest potential energy (A3-2 site [7]) in the Van der Waals
gap between layers. We assume that there are central
potential interactions between the lithium atom and the
nearest selenium and indium atoms with interaction
parameters Ag, Bg and A+,B4, respectively. Since we have
only two new normal mode frequencies and since B is
typically small compared to A, we have neglected Bg and B,
and determined Ag and A, by associating the frequencies 92
em™! and 388 cm™} with normal modes dominated by lithium
atom motion parallel and perpendicular to the layers,
respectively. The resulting values for Ag and A, are 1.61
N/m and 54.8 N/m, respectively. The large value of A,
relative to that of Ag is consistent with the facts that the
indium atomic radius (0.76A) is larger than that of selenium
(0.60A) [8] and that a lithium atom in the A3-2 site lies
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directly above the indium atom to which it is coupled. The
restoring force on the lithium atom is therefore dominated

by A5 in the mode in which the lithium atom moves

perpendicular to the layers (@=388 cm'l) and by Ag in the
mode in which the lithium atom moves parallel to the layers
(=92 cm™t.)

After incorporating the force constants Ag and A, into

the dynamical matrix, we calculated the normal mode
frequencies and eigenvectors as functions of the wave vector

k for Li0 5 InSe. The dispersion curves thus obtained are

plotted in Fig. 4. We note that the normal modes primarily

Rt
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Fig. 4 Phonon dispersion curves for lithium intercalated

Y-InSe.
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associated with the InSe lattice are little affected by the

presence of the lithium, since the mass of a lithium atom is

much smaller than those of indium and selenium atoms. The
normal modes primarily associated with lithium atom motion
1 and 388 cm™?t
the weak Li-Se coupling and the lack of coupling between

at 92 cm~ are essentially flat as a result of

lithium atoms in different unit cells.

5. CONCLUSIONS

A lattice dynamical model has been developed for both
pure and lithium-doped y-InSe. The model contains short-
range and Coulomb interactions. Phonon dispersion curves
have been calculated for both the intercalated and non-
intercalated cases. The results are consistent with
observed infrared and Raman data.
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p. Molecular Dynamics Study of the Lattice Vibration
Contribution to the Frequency-Dependent Dielectric Constant
of Lithium lodide

J. Deppe®, M. Balkanski*®, R. F. Wallis and A. R. McGurn*
Physics Department, University of California, Irvine
Irvine, California 92717

Abstract

A molecular dynamics simulation has been performed on the crystal lithium
iodide, Li]. A rigid ion potential is used with parameters fit to thermal ex-
pansion, isothermal compressibility, lattice energy and the frequency of the
transverse optical mode at the zone center. The current-current correlation
function has been calculated at T = 200K and 400K, and from this the
absorption and dispersion have been obtained. Anharmonic broadening is ob-
served at the higher temperature. In addition, the mean square displacements
of the two ions, and the radial distribution function are calculated.
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1. Introduction

Lattice dynamics calculations on ionic crystals are beset by a number of interesting
theoretical problems. The most evident problems which distinguish the study of ionic
crystals involve the proper treatment of the long range Coulomb interactions between
ions. This difficulty has been studied over a period of many decades and significant
advances in the handling of the long range Couloumb interaction have been made by
Ewald!. Born? and other workers as we shali detail below. In addition to these long
range electrostatic effects, atomic polarization effects in ionic solids have been treated
by Dick and Overhauser®, Hardy*, and Karo and Hardy® using shell and deformation
dipole models, respectively. The successful description of the lattice dynamics of the
lithium halides, however, is still hampered by problems peculiar to these particular
ionic compounds. These problems include: 1) the large non-central interactions which
are inferred from deviations from the Cauchy relation, ¢;2 = ¢44, and which in LiF®,
has the value of ¢;2 — ¢4y = —2.25 x 10" dyn/cm?, the largest of all the alkali halides;
2) the importance of next nearest neighbor short-range interactions due to the small
size of the lithium atom; and 3) the large anharmonic contributions, especially for the
heavier halide salts. In an attempt to address a solution to 1) through 3) above, Verma
and Singh” found it necessary to employ a modified shell model which included 3-body
interactions® to calculate the phonon dispersion relations of the lithium halides. Along
the lines of Ref. 7, Rastogi et al® used a similar model to calculate the phonon dispersion
relations and the anharmonic properties of the lithium halides. Their calculation of the

real and imaginary parts of the self-energy shift at w = 0 and w = wro indicates that
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the anharmonic contributions increase substantially with increasing halide size. An
important conclusion of their work was that the perturbation approach employed was
legitimate for lithium iodide up to 150K, which we believe (see below) is comparable
to or less than 6p(Lil).

In this paper, we investigate the temjerature dependence of the infrared lattice
vibration absorption of crystalline lithium iodide. We have modified a rigid ion model
first proposed by Michielsen et al.!® Although computer resources have now reached the
stage such that more sophisticated potentials, i.e. 3-body interactions!! and explicit
polarization terms!?, can be employed, the use of a central force interaction potential
is justified in this case by the extremely small deviation from Cauchy behavior for
lithium iodide!®; (c12 — c4)/(c12 + ca4) = 0.005. In addition, although polarization
certainly affects the dynamical properties of this crystal, the transverse optical mode
at k = 0, which is the mode we will be probing, is not affected to a large extent.
We are left with the large anharmonicity, which can be handled nonperturbatively
by the molecular dynamics method. The meclecular dynamics simulation is suitable
for investigating thermodynamic and dynamic properties of materials. It has been
successfully applied to fast ion conduction and defect diffusion in crystalline solids ¥13,
structural investigations'®!? and vibrational studies!® of amorphous solids, and studies
of correlated motion of atoms in liquids!®. One of the main reasons the use of this
methor has become so widespread is the ease with which results may be compared with
experimental data. In principle, any experimentally measurable quantity can also be

extracted from the molecular dynamics results. In the present treatment, the frequency
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and temperature dependent conductivity (which is measured in the laboratory), and
from this the dielectric function, is directly obtained from the current-current correlation
function. We have calculated these quantities at two temperatures, 200K which we
argue is on the order of the Debye temperature for this material, and 400K, at which we
see large anharmonic broadening in the correlation functions. Lowndes?® has measured
the transverse optical frequency wro using far infrared transmission through ultra thin
films 2t T = 5K and T = Tryoom- However, we have not uncovered a measurement of
the temperature dependent broadening with which we can compare our results. Other
properties that we have calculated are the radial distribution function and mean square
displacements of the jons.

The remainder of the paper foliows the foliowing outline. In section 2, the crystal
structure and relevant properties of LiI are reviewed. In section 3 we give the potential
to be used in this simulation, a variation on one first used by Michielsen et al!°. The
assumptions and constraints inherent in the model will be enumerated. The equations
of motion and simulation parameters, such as the timestep, numerical tolerances and
temperatures investigated are also given. In addition the determination of the corre-
lation functions, radial distribution function and mean square displacement function is
discussed. In section 4, results are presented for two different temperatures, allowing
an estimation of the magnitude of anharmonic effects. Finally, in the last section are

presented conclusions and suggestions for future study.




2. Properties of Lil

Lithium iodide crystallizes in the NaCl structure. The bravais lattice is face-centered
cubic; the basis consists of one Li atom and one I atom separated by one-half the body
diagonal of the conventional unit cell. Each atom has six nearest neighbors of the op-
posite species. The reciprocal lattice vectors for an fcc lattice are given by the primitive
translation vectors of 2 body-centered cubic lattice. The nearest neighbor distance is
rnn = 3.004 at room temperature?!, and the cube edge has length a = 2r,.,. Thereisa
relative lack of experimental and theoretical work on this crystal; the former is possibly
due to the fact that the solid is extremely hygroscopic. We have uncovered experimental
data on the melting temperature!®, thermal expansion and isothermal compressibility??,
the high frequency dielectric constant?®, and lattice energy!®. The transverse optical
frequency at the zone center? has been determined using far infrared transmission mea-
surements through ultrz thin films; however, the variation of the absorption peak with
temperature has not been discussed to our knowledge. A measurement of the elastic
constants'® has yielded ¢;7 & c44, indicating that a central force approximation may be
a very good one. The other lithium halides, in contrast, show large deviations between
c12 and cyy; the difference for LiF is the largest of all the alkali halides. There has also
been a measurement of the ionic conductivity of LiI.?® The study of ionic conductivity
in the alkali halides has a long history and is known to occur almost exclusively through
the diffusion of positive ion vacancies?®®. These vacancies arise either through thermal
activation, leading to pairs of positive and negative ion vacancies known as Schottky

pairs, or as a result of doping. In our case, there are no defects due to doping, and
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TABLE I: Value of the Debye temperature for some alkali iodide compounds.

Substance | dp
Nal 164K
KI 132K
Rbl 103K

diffusion would be due entirely to Schottky pairs. However, it can be expected that,
although ionic diffusion will be quite small in the solid phase of L:I without the intro-
duction of impurities or defects, at temperatures not too far below the melting point
the litkium may indeed be able to diffuse through interstitial hopping. The iodine ion is
huge in comparison to the lithium ion, and may, in effect, leave large channels through
which the lithium can move. In the former case of diffusion by Schottky defects, the
mobility activation energy and defect formation activation energy have been measured
by Jackson and Young® to be 0.43 and 1.06eV respectively.

The crystal is single phased throughout the temperature range up to its melting
point, which is 742K. Although we have been unable to find a value for its Debye
temperature, it can perhaps be estimated by considering the value of this quantity for
the other alkali halides. In Table I, we list the Debye temperature for three alkali-
iodides®>2%. By simply extrapolating this data to lithium iodide, we might therefore
expect that the value of 0p is of the order of 200K. An analysis which takes into
account the variation in sound speed and lattice spacing indicates that p(Lil) may be

somewnat lower, on the order of 160K
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3. Theory

3.1 Interatomic potential

In this work, we have chosen a modified version of an interatomic potential proposed
by Michielsen et al'®. The largest term in the potential, in terms of its contribution to
the ground state energy, is unambiguously defined, since LiI is an ionic crystal. The
Coulomb energy for this solid is found to account for = 90% of the total potential energy,
as is typical for all the alkali halides. A modified Born-Mayer terin is used for the short
range repulsive term. In addition, dipole-dipole and quadrupole-dipole attractive terms

and 2 hard core repulsive term are included. The pair potential is given by,

—repd
FEE 4 ezpl—k{ry — i) — 2~ T4
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where

r;; = separation of atoms i and j,

s; = valence of atom i1,

rijo =sum of ionic radii®’,

¢;; =coefficient of dipole-dipcie interaction,

d;; =coefficient of dipole-quadrupole iateraction,

¢;; =coefficient of hard core repulsion,

b, k =parameters fit to thermal expansion and isothermal compressibility.

We can express the total potential energy V(r) as

V(r) ',»S < d;: ;5
—ez _Lr'-_r' ___-.;f.+_, 9
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where A is the Madelung constant, N is the number of _.it cells, r is the nearest
neighbor distance, and it is understood that the sum does not include the term i = j.
We have used the method of Sangster and Dixon?® in the evaluation of the long-range
Coulomb term with the Ewald summation technique.

There are two parameters in this potential, both in the modified Born-Mayer term,
which are fit to experimenta! data: the prefactor b, and the inverse decay length k. We
may determine these parameters by considering the following two expressions?® which

relate derivatives of the potential at non-zero temperature to thermodynamic quantities,

dd - QVM

To?l;lro = 3TT, (3)
L0 9V, T ap Ta 0B

gz = S0+ 5GP+ (G )+-T ) (4)

where @ is the energy density, ro is the equilibrium lattice coastant, « is the thermal

expansion coefficient, 3 is the isothermal compressibility and Vs is the volume per

molecule.

The following are experimental values for the lattice energy U, thermal expansion

coefficient, the isothermal compressibility and two of it’s derivatives,

~U = 754.3kJ,"° (5)
a=16.7x 105K %
=583 x 10" !m2N"1 22

E(Eé)'-’ = 37.3 x 10~1m?/N .2
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1,08, _ ~4 7r-1 30
ﬂ(aT)p—5X10 K=,

wro = 2.7 x 103reds™1.20

We desire that the potential energy satisfy the following objectives: reproduce the
lattice energy of the crysta!; reproduce the frequency of the TO mode at the zone center;
lead to the satisfaction of Egs. (3) and (4). In addition, we of course require that the
ions be repulsed as they approach each other, and this sets rather stringent limits on
the hard core term e;;/rf;.

We fit the quantities listed above with the following parameters: the magnitude of .
the prefactor to the Pauli repulsion, b; the decay constant k; and the magnitudes of
the dipole interactions. The strength of the hard core repulsion between the atoms
ei; is in effect fixed. This last statement is true because the repulsion must be strong
enough to prevent a double well from developing between ions (these arising from the
Coulomb attraction and possibly the dipole interactions), and must be small enough to
keep the hard core deep. We have chosen to vary the strength of the dipole interactions
from the values given by Ladd® because the frequency of the TO mode at § = 0
is considerably less than what this model predicts, and the very large coefficients of
the dipole interactions are the only parameters which can be varied without adversely
affecting the lattice energy and/or the two thermodynamic relations, Eqs. (3) and (4).

The procedure is the following; first the lattice spacing is set to 34 at room tem-
perature, then we adjusted the b and k to satisfy the thermodynamic relations given
in Egs. (3) and (4). It should be noted that these relations are not very sensitive to

the c,, and d;;. The TO frequency is then calculated, we then adjust the ¢;; and d;,,

B}
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TABLE II: Values of the parameters used in Lil calculations, 1n additicn. k¥ = 1.1 x 10!%9m~1 } =

2.8 x 1058 m*
Li-I | Li-La I-1

Tii0(A) 3.00 | 0.95 | 2.05
;/10-T°(J —m®) | 25.0 | 8.54 | 266.0
d;;/T0-®(J —m®) | 114. | 36.8 | 1000.0
e /10- (T = m®) [ 6.5 | 10.0 | 400.0

re-determine b and k, following the same steps until the TO frequency is close to the
experimental value 2.7 x 10!3rad — s~!. Finally, the e;; are adjusted to ensure that there
is no attraction between the ions as they approach closer than 3A.

We find the lattice energy to be U = 725kJ, within 5% of the experimental value
of 754kJ, Eq. (5). In addition the calculated TO frequency is & 3.1 x 10'3rad — 57!,
within 10% of the experimental value of 2.7 X 10'3rad — s~!. The expressions involving
the first and second derivatives of the potential are fit exactly at room temperature,
and within 5% error at all others. We have varied only the lattice constant as a function
of temperature, leaving one parameter and two equations to be fit. This has been done
by splitting the difference between the results from the two equations.

We have found that restricting the short range interactions to the second nearest
neighbors, as has been done often in the past, is insufficient here. Neglecting terms
beyond second neighbors was found to result in a 5% discrepancy 'compared to the
result including their contribution. Therefore, all atoms out to the tenth neighbors are
included in this part of the calculation. The values of the parameters used are listed in

Table II.

There are certain defects inherent in such a model. Among them are:

»
<
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1) Tunneling effects, which may well be important considering how small the lithium
ion is, and the importance of interstitial diffusion in this system, are neglected.

2) The potential is that of a rigid ion model, so there are no polarization effects
present. We are interested in the response at the transverse optical (TO) frequency,
however, which is not affected to the same extent that the longitudinal optical (LO)
mode is. Although simulations have been successfully performed using rigid ion models
for extremely polarizable materials in the past3?33, (4gI), it would be very desirable to
do a molecular dynamics simulation using a shell model potential on this system.

3) Since the parameters of the potential are fit to low temperature experimental
data for which the harmonic approximation gives a complete description of the system
dynamics, the potential is only accurate near the minimum of the potential energy; we
therefore might expect problems at very high temperatures, i.e. in the liquid phase.

We note here that the original potential used in Ref. 10 did not have the hard wall
repulsion and therefore did not prohibit pairs of ions from collapsing on themselves. This
difficulty is only critical at very high temperatures, where the model crystal is entirely
unstable. The absence of a repulsive term in the potential that can counterbalance the

Van der Waals terms at small separations leads to a collapse of the pair.

3.2 Equations of Motion
We treat a crystal supercell in the form of a cube containing 216 atoms. Periodic
boundary conditions are imposed. The classical system of equations to be solved ~on-

sists of 216 x 3 = 648 coupled differential equations, 3 (corresponding to the cartesian

directions) for each of the 216 atoms. The long-range Coulomb force couples atoms at
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all distances and is handled by the Ewald® method. The reciprocal space summation
effectively accounts for the interactions of atoms which are separated by more than one
supercell distance, which in our case is 184. We have solved this system of equations,
which include anharmonic contributions exactly, to a numerical accuracy of 1 part in
107.

We begin with Newton’s equation, a second order differential equation,
Fa = mia, (6)

and express this as two first order coupled ordinary differential equations, (we now drop

the cartesian subscript for convenience)

dp .
dx

The force arises from interactions involving all atoms in the supercell and beyond, and
is in addition a vector quantity. We indicate a vector quantity with boldface.

Now let us make the following change in scale:

m = m'my, (9)
X = X'zo,
F=FF,,

where mg = m, is the proton mass, o = 10~'%m, and Fo = 1078N. We also write
cij = ¢ x 107%(J — mf), dij = df x 10~%°(J — m?), e = €f; x 10~1%(J — m?) and

b=1b"x 10~%8(J — m*). Using p’ = p/\/mozoFo, and t’ = t\/Fu/zomo, the equations

111




of motion can be expressed in terms of quantities which are all of order unity, which is

necessary from a computational standpoint. We have

dp’

r_

F=—, (10)
,dx’

p=miX (11)

If these scales are combined, we find that the "real” time is related to the scaled time by
t' = 2.42 x 10'¢. We have employed a scaled timestep of 1 in all simulations presented
here, which corresponds to 4.1 femtoseconds.

Now that the time scales are established, it will be necessary to scale the velocities,

or momenta, in order to set the effective temperature T,ss of the crystal. We have that

Ex = 2NkpT.s;, where

=Y p/(2m). (12)

In terms of the scaled, or primed variables, this becomes,

EK \/ moFo:cg)p, (13)

2m mo

= 10“‘32 2m’ ,

= 104E,.

We can solve for T.sy, using kg = 1.38 x 10-2*J K-}, and find

Ty = 52—5% = 223.6 E}. (14)
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3.3 Connections with experimental data

We now turn attention to the current-current correlation function, which will be shown
to be related to the conductivity and dielectric constant. First, we define the frequency

dependent current density-current density correlation function as

Mo(w) = [ dte(ia(t)ja(0)), (15)

where j,(t) is the ¢ = 0 fourier component of the current density vector and the angular
brackets denote an ensemble average. We will refer to the current density-current

density correlation function as simply the current-current correlation function. We can

express this as®*
Ma(w) = lim = dte’j, (¢) [ dremiors, e
* t~o0 ¢ Jo 3« Jo Jal®):

These integrations cannot be performed exactly as they extend to co; however, cutting
off the summation at ¢t = 7 will give the resulting correlation function a wi;ith, Aug
= 2w/, which can be compared with the actual width.

Many advanced texts on many-body physics discuss the connection between this
correlation function and the frequency dependent conductivity. Tke teal part of the

conductivity at § = 0 can be expressed in terms of the velocity-velocity correlation

function as®

Reloun(u)] = g1 =) [ dee*{un(e)un(0), (16)

where the subscript G indicates an average over a grand canonical ensemble, 8 = 1/kgT,

Q is the particle charge, V is the crystal volume and % =Planck’s constant divided by
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2. Presently, we are only considering the diagonal component of this tensor, we have
therefore used the avera;.. v "’ e three cartesian components to improve our statistics.
All results presented *=i-.r ~. ~. "»~zu averaged in this way. We can move the factors of
@ and V into the grand caa ..ical ensemble average to obtain the conductivity in terms
of the current density-curr. ¥ Jcnsity correlation function. Comparing Egs. (15) and
(16), we find that the fur.:. : we are zalculating is related to the frequency depender’,

conductivity by
[(w)a(l — e*)V/(2hw) = Re[0a,a(w)]. (17

We can also relate these expressions to the real and imaginary parts of the dielectric
function, which are more amenable to experiment:-] determination.

We have

Aro

€(w) = (€ + 1—;); (18)
therefore,
Im(e(w)) = 27T(w)(1 — e P2 V/hw?. (19)

We can then find the real part of ¢(w) using the Kramers-Kronig relations.

One final observation concerning the calculation of the current-current correlation
function is the following: Many quantities derived from molecular dynamics simulations
have within them some fluctuations, either from small temperature variation: , rcund-off
error, or a lack of suitably long time averaging. This effect is particularly pronounced in

correlatior. functions, which sample over long dictznces in the crystal. It has therefore
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become commonplace®, if not standard, to smooth correlation functions with a gaussian
which is centered on each data point and whose width is nominally some small quantity.

In the resuits to follow, we have employed such a smoothing, procedure using the function

1 - 2/82
—_— —(w-wo)?/ )
\/.5/ dl.dH(uJ)C N (20,

where wy is the frequency of interest and § = 5.7 x 10!rad — s~! which is 3/500 of the
full frequency width over which the correlation {unctions are calculated.

Next we define the mean square displacement as a function of time, M SD(t), which

is related to the self diffusion of the two ion types in this case,

MSD(t) = ((ri(to + t) — ri(t0))?)- (21)

The angular brackets indicate an average over all atoms or ions of type i.
The direct connection between the mean square displacement and the diffusion co-

efficient D for trat particular particle is given by*?,

(r(t") = 6D, (22)

where { is the time.

We also calculate the radial distribution function, RDF. This quantity simply ex-

presses the average number of atoms within some distance, r, of some particular atom.

4. Molecular Dynamics Simulation

In this section we give results from molecular dynamics calculations on Li] at two

temperatures. We have calculated the current-curreat correlation {unction, the mean
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square displacements for the two atoms, and the radial distribution function. The
current-current correlation function is related to the ionic conductivity through a factor
of (1 — e#™)/w. We then use the relation between the ionic conductivity and the
imaginary part of the dielectric function to find the absorption. The real, or dispersive
part of the dielectric function is then calculated from the imaginary part using the
Kramers-Kronig relations. We have obtained these quantities at the temperatures 200K
and 400K, the first being well below the melting temperature T,,, which is 742K, and
of the same orde1 ¢f magpitude as the Debye temperature(fp). The second temperature
is still well below T, Lut presumably almost 20p and should exhibit large anharmonic
eftects. We account for the thermal expansion of the crystal using Eqs. (3) and (4).
The thermal expansion produces a decrease in the 'i‘O frequency as a function of
increasing temperature. This is simpi- understood as a consequence of the atoms
moving further from the absolute minimum of their potential energy positions as the
temperature increases. In addition to this "static” frequency shift, there is also to be
expected a dynamic downward shift in frequency with increasing temperature due to
the vibrating atoms reaching into regions of the potential with decreasing curvature.
It is not at all clear that the initial positions and momenta represent an equilibrium
configuration; therefore, we integrate the equations of motion ahead for some thermal-
ization time, t7y. One criterion for determining when this thermalization time has been
reached, and the one to be used here, is that the effective temperature T.s; = Ei/(3kp),
varies by less than a couple of percent across the sample, and that it not vary with time.

We have tricked the system into quickly achieving this thermal equilibrium in the fol-
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lowing way; at the beginning of the simulation, the potential and kinetic energies are
calculated, the momenta are scaled to correspond to the desired temperature, tnen the
positions are adjusted so that the kinetic and potential energies have roughly the same
value, as they should according to the equipartition theorem. Although this does not
result in perfect thermal equilibrium, it decreases the computer time necessary to reach

this stage. We used 18,000 timesteps to reach a good thermal equilibrium at 200K and
400K.

4.1 Results and Discussion

We performed simulations on a 216 atom cube with periodic boundary conditions. The
cutoff parameter in the Madelung sum was set to 0.35, and we sum over reciprocal lattice
vectors up to relative magnitude |k|? = 48. The energy and temperature fluctuated less
than 4% over the entire simulation time for all the cases presented here. The timestep
was 4.1 femtoseconds. This timestep is somewhat arbitrary as the differential equation
solver hses as many timesteps as is necessary to meet the tolerance requirements as set
by the user, which was set to 1 part in 107. We have performed an ensemble average
over two sets of different, but random, initial conditions. All of the results presented
below have been averaged over these two separate simulations.

We first present results for T = 200K, for which 18000 timesteps were required
for thermalization. The lattice spacing and TO frequency at the zone center for this
temperature are 2.994 and 3.4 x 1013rad — s~!, respectively. The correlation func-
tions were calculated over 8000 timesteps and averaged over two sets of random initial

conditions. These numbers correspond to 73.8 x 10~!2 seconds of thermalization time
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and 32.8 x 10~!? seconds of data gathering time. This is indeed a rather short time,
however, the correlation functions show little or no change after 6000 steps. We first
present in Fig. 1 the imaginary part of the dielectric constant, or the absorption peak
from the current-current correlation function at T = 200K, in arbitrary units. Note
the small oscillations superimposed on the main peak; these could be smoothed by
widening the width of the smoothing gaussian as described in the previous section. We
will encounter these features in the data for T = 400K as well, and will take up their
possible causes and solutions then. The function peaks at the TO frequency at § =0,
3.4 x 10rad — s~! as expected, and shows a small tail, as seen in Fig. 1.

Using the Kramers-Kronig relations®, we have calculated the dispersion, or real part
of the dielectric function, with the results for 8000 timesteps at T = 200K also shown
in Fig. 1. As is typical, the region of anomalous dispersion coincides with the region of
strong absorption.

In Fig. 2 is plotted the radial distribution function for 1500 timesteps. The results
for longer run times and for ' = 400K are indistinguishable. It is interesting to
note the extremely sharp and well defined peaks corresponding to the various neighbor
positions. In Table III we give the number of neighbors and their distances for the
rock-salt structure with the nearest neighbor distance normalized to unity. We can
identify up to the 10** neighbor from the graph and see that the area under each peak
reproduces the number of the various neighbors very precisely.

Next, in Fig. 3 are given the mean square displacements for Li* and I~ ions at 200K.

We note immediately that there is no diffusion, as is expected at this low temperature.
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Figure i Real and imaginary parts of the dielectric function of LiI (in arbitrary units) calculated over
8000 timesteps. This data represents an average over two sets of random initial conditions calculated
at a temperature of 200K. The lattice spacing and TO frequency at the zone center are 2.994 and
3.4 x 10'3rad — s~! respectively.
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Figure 3: Mean square displacement as a function of time at T = 200K for iodine, solid line, and
lithium dashed line.

121




TABLE III: Numbers of various neighbors and their distances for Lil

Neighbor number | number of neighbors | normalized distance

1 6 1

2 12 V2= 1.41
3 8 V3= 173
4 6 2

5 24 V5 =223
6 24 V6 = 2.45
7 12 V8 = 2.83
8 27 3

9 12 V10 = 3.16
10 12 V1l =~ 3.32

If self diffusion were taking place, we would see the mean square displacement increase
linearly with time, as indicated in Eq. (22). We can estimate the frequenc: of oscillation
of the lithium using the spacing of the peaks, which is 150 femtoseconds for the lithium
and 600 femtoseconds for the iodine. The frequency of the iodine motion is close to
one-quarter that of the lithium, which corresponds very closely to the square root of
the ratio of their masses, which is \/m—L,—/_m_I =0.23.

We now turn attention to a simulation on the same systern but at 400K. One
advantage of performing these calculations at a temperature larger than the Debye
temperature is that any inhomogeneities in the initial conditions should be evened
out quickly due to the large anharmonicities at work. We have used the same initial
positions and momenta as in the previous simulation, but scaled to correspond to this
temperature. The interatomic spacing and TO frequency at 400K are ~ 3.024 and
2.99 x 10"rad — s~! respectively. 18,000 timesteps were used for thermalization, and

the same timestep of 4.1 femtoseconds was used throughout.
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In Fig. 4 are plotted the absorption and dispersion after 8000 timesteps at 400K.
The gross structure of these plots exhibits the following features. The middle of the
three maxima occurs very near the TO frequency of 2.99 x 10'3rad — s~1, although
its exact position cannot be pinned down. The width of the function has increased
noticeably, from a full width at half maximum of = 0.2 x 10*3rad — s~!1, at T = 200K,
in Fig. 1, to = 1.2 x 10¥%rad — s~! in Fig. 4. In addition, the length of the high
frequency tail is greatly increased at the higher temperature.

One disturbing feature of these correlation functions is the persistence of the periodic
maxima and minima. It is found that temporal and ensemble averaging decreases the’
magnitude of these oscillations. Therefore, we believe this small scale structure to be
unphysical and a consequence of the finite time averaging.

Finally in Fig. 5 is plotted the mean square displacement calculated after 8000
timesteps. The magnitude of the displacements for the two species is the same indicating

that the temperatures of the two sublattices are the same.

5. Conclusion

We have calculated the frequency dependent dielectric function, the radial distribution
function and mean square displacements, all as functions of temperature, for crystalline
lithium iodide. A rigid ion mcdel was used for the interatomic potential. The various
parameters in this potential were fit to the thermal expansion, the isothermal compress-
ibility, the lattice energy and the frequency of the TO mode at the zone center. We

have also included a term which acts as a hard core repulsion, preventing the solid from
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Figure 4: Real and imaginary parts of the dielectric function at T = 400K after 8000 timesteps of
data taking. The lattice spacing at this c...perature is 3.024. This absorption peaks near the TO

frequency of 2.99 x 10'3rad — s~1, however, the broadness inhibits an exact determination of the peak
position.
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collapsing at high temperatures.

A large increase in anharmonic broadening in the frequency dependent correlation
functions was observed in passing from T = 200K to T = 400K, indicating that the
Debye temperature for this material most likely lies in this range, as we had inferred
from data from other alkali iodides (see Table I). We have been able to reproduce
the TO frequency within 10% of the experimental value, although no experimental
measurement of the temperature dependence of the infrared absorption or dispersion
for this material has been found. It would be very interesting if experimental data on

these temperature dependences were to become available to provide a comparison with

our theoretical results.




References

[*] Present address: Laboratoire de Physique des Solides, Université Pierre et Marie

Curie, 4 Place Jussieu, 75252 Paris Cédex 05, France.

[**] Permanent address: Laboratoire de Physique des Solides, Université Pierre et Marie

Curie, 4 Place Jussieu, 75252 Paris Cédex 05, France.

[+] Permanent address: Department of Physics, Western Michigan University, Kala-

mazoo, MI 49008-5151.
[1] P. P. Ewald, Ann. Phys.(Leipzig) 54, 519, 557 (1917).
[2] M. Born, Atomtheorie des festen Zustandes (J. B. Teubner, Berlin, 1923).
[3] B. G. Dick and A. W. Overhauger, Phys. Rev. 112, 90 (1958).
[4] J. R. Hardy, Phil. Mag. 7, 315 (1962).
(5] A M. Karo and J. R. Hardy, Phys. Rev. 129, 2024 (1963).
[6] C. V. Briscoe and C. F. Squire. Phys. Rev. 106, 1175 (1957).
[7) M. P. Verma and R. K. Singh, Phys. Stat. Solidi 33, 769 (1969).
8] R. K. Singh, J. Phys. C. 4, 2749 (1971).

[9] A. Rastogi, J. P. Hawranek and R. P. Lowndes. Phys. Rev. B. 9, 1938 (1973)

(10] J. Michielsen, P. Woerlee, F. v.d. Graaf and J. A. A. Ketelaar, J. of Non-Cryst.
Solids 101, 101-110 (1988).

127




[11] P. M. Roger A. J. Stone and D. J. Tildesley, Chem. Phys. Let. 145, 365 (1938).
[12] P. A. Madden and J. A. Board, J. Chem. Soc. Fara. Trans. II 83, 1891 (1987).
[13] K. O. McClean and C. S. Smith. J. Phys. Chem. Solids 33, 275 (1972).

[14] M. J. Gillan, Physica 131B, 157 (1985).

(15) J. Moscinski and P. W. M. Jacobs, Proc. Roy. Soc. of London A 398, 141 (1985).
[16] P. Vashishta, R. K. Kalia and 1. Ebbsjo, J. Non-Cryst. Sol. 106, 301 (1988).

[17) Q. Xu. K. Kamamura and T. Yokokawa, J. Non-Cryst Sol. 104, 261 (1988).

[18] W. A. Kamitakahara, R. Biswas, A. M. Bouchard and F. Gompf, Physica B 156.157,
213 (1989).

[19] A. Rahman, Phys. Rev. 136, A405 (1964).
[20] R. P. Lowndes and D. H. Martin, Proc. Roy. Soc. A. 308, 473 (1969).

[21] See e.g., C. Kittel, Introduction to Solid State Physics, 5** edition, (John Wiley
and Sons, New York, 1976), p. 92.

[22] M. P. Tosi, Solid State Phys. 16, 1 (1964).
(23] B. J. H. Jackson and D. A. Young, Phys. Chem. of Solids 30, 1973 (1969).

(24] A. B. Lidiard, Handbuch der Physik, edited by S. Flugge (Springer-Verlag, Berlin,
1957), Vol. 20, p. 246.

[25] M. P. Tosi and F. C. Fumi, Phys. Rev. B 131, 1458 (1963).

128




[26] A. L. P. Handbook, D. W. Gray ed. (McGraw-Hill Book co., New York, 1973), p.
4-116.

(27} L. Pauling, The Nature of the Chemical Bond, (Cornell University Press, Ithaca,
NY, 2" edn., 1940).

(28] M. J. L. Sangster and M. Dixon, Adv. Phys. 25, 247 (1976).

{29] M. Born and J. E. Mayer, Z. Phys. 75, 1 (1932).

(30 D. Cubicciotti, J. Chem. Phys. 31, 1646 (1959).

(31] M. F. C. Ladd, J. Chem. Phys. 60, 1954 (1974).

(32] P. Vashishta and A. Rahman, Phys. Rev. Lett. 40, 1337 (1978).

[33] M. Parrinello, A. Rahman and P. Vashishta, Phys. Rev. Lett. 50, 1073 (1983).
{34] J. P. Hansen and M. L. Klein, Phys. Rev. B 13, 878 (1976).

(35] R. F. Wallis and M. Balkanski, Many-Body Aspects of Solid St'ate Spectroscopy
(North- Holland Physics, New York, 1986), p.49.

(36] A. R. McGurn, A. A. Maradudin, R. F. Wallis and A. J. C. Ladd, Phys. Rev. B
37, 3964 (1988).

(37} R. K. Pathria, Statistical Mechanics, (Pergamon Press, Oxford. 1972), p. 455.

(38] see e.g., G. Arfken, Mathematical Methods for Physicists, (Academic Press, Inc.,
Orlando, 1985) p. 425.

129




Publication

"Lattice-Drnamics and Network-Dynamics Studies of Vibrational Modes in

Lithium-Doped Borate Glasses," J. Deppe, M. Balkanski and R. F. Wallis,
Phys. Rev. B41, 7767 (1990).

"Effect of Intercalated Lithium on the Direct Band Gaps of Indium
Selenide,” P. Gomes da Costa, M. Balkanski and R. F. Wallis, Phys. Rev.
B43, 7066 (1991).

"Dynamical Properties of Fast Ion Conducting Borate Glasses," M.
Balkanski, R. F. Wallis, J. Deppe and M. Massct, Festschrift for Rogério
Leite, to appear.

"Lattice Vibrational Properties of y-InSe With and Without Intercalated
Lithium," P. Gomes da Costa, M. Balkanski and R. F. Wallis, Festschrift
for Rogério Leite, to appear.

"Lattice Dynamics and Network Dynamics Calculations on Vibrational
Modes of Lithium Borate Glasses,” J. Deppe, M. Balkanski, R. F. Wallis
and M. Massot, Mat. Res. Soc. Symp. Proc., 210, 125 (1991).

"Elec.ronic Energy Bands in y-InSe With and Without Intercalated
Lithium,” P. Gomes da Costa, M. Balkanski and R. F. Wallis, Mat. Res.
Soc. Symp. Proc., 210, 137 (1991).

"Molecular Dynamics Study of the Lattice Vibration Contribution to the

Frequency-Dependent Dielectric Constant of Lithium Iodide," J. Deppe, M.

Balkanski, R. F. Wallis and A. R. MGurn, Phys. Rev. B, submitted for
publication.

"Dynamical Properties of Fast Ion Conducting Borate Glasses,” (review
paper) M. Balkanski, R. F. Wallis, J. Deppe and M. Massot, Materials

Science and Engineering B, to appear.

130




IV. Ph.D, Theses Completed

1. dJ. Deppe: "Ionic Conductivity and Vibrations of Glasses and Molecular
Dynamics of Lithium Iodide,” University of California, Irvine, 1990.

2. P. Gomes da Costa: "Theoretical Investigations of the Effects of Lithium
Intercalation on the Properties of Indium Selenide”, University of

California, Irvine, 1990.

131




